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Executive Summary 
 When our team was approached by Mn/DOT and the Northland Advanced Transportation 
System Research Laboratory (NATSRL) to address the problem of impacts between the 
sand/chemicals box on a snow plow and fixed obstacles of various types, we began the search for 
an inexpensive, yet reliable, box/obstacle collision avoidance system for use on Mn/DOT 
snowplows throughout District 1 and eventually the entire state of Minnesota.   This study began 
with a review of available obstacle detection equipment and included mobile as well as 
infrastructure based equipment.  This search included an exploration of truck mounted onboard 
GPS (Global Positioning Systems), radar or sonar systems as well as radio based (RFID – Radio 
Frequency Identification) stationary equipment to mark obstacles.  In addition to these solutions, 
the team considered development of obstacle maps and the use of active GPS devices to explore 
a vehicle’s immediate surroundings for potential collision. When we considered that the primary 
objective to achieve the goal was to keep the system cost well under $750 for each snowplow, 
the team’s options were limited.  A final prototype solution which consisted of a hardened on-
board microcontroller, a GPS sensor and a box position sensor was designed at a cost of about 
$575.   

 The research team chose the Rabbit Semiconductor OP7200 as the human-machine 
interface (HMI) because it was easy to program (it was supplied with “Dynamic C” 
programming language) included a touch screen for operator communication with the controller, 
runs on a wide range of dc power meaning it will operate using plow truck power and includes a 
full compliment of digital input and output ports that are directly recognized by the controller. A 
Garmin 15 H was selected as the GPS, again for its low cost, its ability to accept plow truck (dc) 
power input, and its ease of programming.  The final deciding factor was that this GPS unit has 
the ability to continue dead reckoning its position for several seconds (up to 30 seconds) even if 
it loses it connection to the satellite operational constellation.  The teams’ final hardware choice 
was the GE Security 166 magnetic switch.  This device was selected as the proximity sensor to 
identify the position of dump box because of its hardened construction and the fact that it was 
designed for heavy equipment application. 

With the system chosen, one that required a reliable obstacle map, the team began to develop 
this map from Mn/DOT’s Br-Info database.  It listed bridge clearance heights, widths, and most 
importantly, physical location in longitude and latitude listed as degree-minute-second (dms) 
formats.  Using this list, which the team copied into MS Access, a Visual Studio 2005 
(VBasic.net) program was developed to extract the bridge locations which were written into an 
obstacle map that could be easily transferred to the onboard controller.  When the team obtained 
the District 1 Br-Info database, the team also obtained two other data sets from officials in 
Duluth.  These were the snowplow route database (“Plowroute” database) which indicated 
starting and ending mileposts along the highways that Mn/DOT needed to plow in the district 
and a database (“mileposts” database) that listed longitude and latitude of (nearly) all the 
mileposts along the state maintained highways in the district.  The program began by building a 
user interface that allows the database manager to observe the process of bridge extract to all of 
the routes within a given Mn/DOT District.  The user begins the program by entering the total 



 

 

number of plow routes within the district.  The VBasic program then opens the plow rote 
database and extracts each highway on a given route and the starting and ending mileposts along 
all of the routes.  In the case of the plow route databases provided to the team by District 1 
personnel, the routes (of which 103 were listed) in this database were, surprisingly, all single 
roadway maps.  While the team suspected that these were not in fact the most recent plow route 
listing, it simplified the extraction process to our files and therefore, they were used.  After the 
highway numbers and distances (in the form of Starting and Ending mileposts) belonging to each 
plow route were obtained by extracting information from the “plowroute” database the program 
entered the “mileposts” database to extract the specific geometry (longitude and latitude) for all 
of the mileposts along the designated highway for any given plow route. Then, the Br-Info 
database was searched for any bridges with a clearance greater than zero – indicating that the 
bridge was in fact an overpass – and whose geometry was between each successive pair of 
mileposts.  Because a one-mile grid is relatively coarse in urban areas and could inadvertently 
extract bridges that are not alone the highway under consideration (ones that may belong to other 
plow routes) before entering the Br-Info search, each milepost distance pair was divided by 10 to 
narrow the search grid to the approximate width of an intersection and then converted to the dms 
format.  Once initial testing was conducted, along a route called 101 in our plow route mapping 
that ran along I35 through downtown Duluth from West 40th Avenue to East 26th Avenue, the 
onboard controller was unable to locate many obstacles.  As the team further checked into the 
problem several items were discovered.  First, the “plowroute” database we were provided was 
not, in fact, up to date and only the several I35 route and selected other routes along major trunk 
highways were single routes, most covered parts of several routes as the team had suspected.  
Again this was not fatal for testing at the early stages since the plow route the team would test 
was in fact this same one the team had numbered 101 (even though the number in District 1 
records had changed).  A further problem was discovered, it seemed that all the bridges (and 
tunnels) constructed when I35 was extended beyond W. 5th Avenue in Duluth were not included.  
This problem was traced to the Br-Info database which was an older version rather than the most 
recent one, a problem related to homeland security issues.  Finally, a fatal problem with the 
original approach to the project was identified: not all potential collision obstacles are bridges!  
Other permanent obstacles that could have collisions with raised sand boxes like pedestrian 
crosswalks, highway road signs, overhead power lines, etc. and temporary obstacles like 
construction equipment and signs, and even tress or sagging power, telephone or cable television 
lines that would never be found in the a regular database of “hard” Mn/DOT assets (like the Br-
Info database) should also be available to the onboard controller.  Because of the missing 
information and presence of many types of obstacles not in Br-Info, the team developed a 
controller application they designated ‘Trainer.’  This application was run to build the test routes 
that were used in all on-road testing actually performed. 

The team conducted extensive testing of the IBIAS (Impending Bridge Impact Alerting 
System) controller both on a test route and then after mounting on a Mn/DOT District I 
snowplow and one operated by St. Louis County Maintenance Department during winter 2007-
2008.  While not completely successful, the team discovered many issues which are being 
addressed, at no further expense at this time to NATRSL or Mn/DOT.  Problems focused in two 
areas: first with the number of obstacles, and resulting computational overhead, and with the 
action of the box position sensor.  While the first problem is not solved, the team has redesigned 
the sensor mounting system and this new mount is the principal subject of on going testing. 
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Chapter 1: Introduction 

1.1 Research Motivation 
It was late into this very long day.  The snow has stopped falling but then so is the 

temperature.  Tom, a relief plow operator running his second route of this 16 hour shift, thought 
as he turned the plow to begin the run back toward the service garage along Route 23.  This new 
route is a bit trickier than the one he normally runs, and this job is way more trying than the lab 
job that is his normal work.  Well only about 30 more minutes of running and he could get out of 
the truck and stretch.  Darn, he thought, looks like the dump box is almost empty – I’ll just tilt it 
up a bit more so the materials will slide back to the spreader.  After driving for about three (3) 
miles he felt that all was well, but the visibility was poor, now, he thought, all we need is this fog 
setting in.  Another two (2) minutes and “BAM” want was that – “oh my Gosh,” he thought, “I 
just rammed the box into that overpass – now there will be hell to pay!”   

Sure Tom made a mistake, after raising the dump box he forgot to lower it as he continued to 
run this unfamiliar route – but can you really blame him, after all those hours in a different job 
than his regular work.  Not really, but still, a plow is now disabled and a route still to be finished, 
and how much damage can there be to the bridge?  Likely the total cost of this accident will run 
into the thousands, records indicate those costs at anywhere from $30,000 to $40,000 per 
incident, and they happen three (3) to four (4) times each year in Minnesota alone.  Can’t a 
system be designed that will avoid this costly and dangerous problem? 

When our team was approached by Mn/DOT and the Northland Advanced Transportation 
System Research Laboratory (NATSRL) to address this problem, we began the search for an 
inexpensive, yet reliable, box/obstacle collision avoidance system for use on Mn/DOT 
snowplows throughout District I and eventually the entire state of Minnesota.   This study began 
with a review of available obstacle detection equipment.  This search included an exploration of 
truck mounted onboard radar or sonar as well as radio based stationary equipment.  In addition to 
these solutions, the team considered development of obstacle maps and the use of active GPS 
devices to explore a vehicle’s immediate surroundings for potential collision. When we 
considered that the primary objective to achieve the goal was to keep the system cost well under 
$750 for each snowplow, the team’s options were limited.  A final prototype solution which 
consisted of a hardened on-board microcontroller, a GPS sensor and a box position sensor was 
designed at a cost of about $575.  This prototype system was deployed, with mixed results, on 
both a Mn/DOT District 1 snowplow as well as a St. Louis County Maintenance Department 
snowplow during the winter of 2007/2008.  While proving marginally successful, in part due to 
sensor problems and a high number of obstacles on the chosen routes, the system appears to be a 
potential solution worth carrying forward through full system debugging and finalizing for fleet 
implementation. 

An assessment of current “box up” warning systems was made so that improvements in the 
interaction of driver and information input can be identified.  The feasibility of linking on-board 
GPS technology for Automatic Vehicle Location or AVL as documented by Alexander, et al 
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2004, Alexander et al 2005, Aono 1998, Dmitriev, et al 2000, and Nookala & Estochen 2002 
with the current bridge information database at Mn/DOT, “BrInfo,” will be investigated 
essentially on a plow-route by route basis to create collision maps.  The first line of defense for 
collision avoidance then will be using some primitive form of map matching as suggested in the 
literature, see Bouju et al 2002, Dmitriev et al 2000, Hofmann-Weilenhof 1997, or Joshi 2002.  
In addition, a prototype warning system that serves as a bridge proximity sensor will be 
developed to alert the snow plow and its driver that the unit is approaching a bridge with the box 
at a dangerous height as suggested by Bostelman et al 2005, Ewald & Wilhoeft 2000, Hong et al 
2004, and Watanabe et al 2002.  This warning system should also be integrated into an on-board 
box position sensor so that the driver can be alerted that the box must immediately be lowered, or 
as a signal to the automatic box controller software system that the box must, temporally, be 
lower to a safe height to allow the vehicle to pass under the bridge or fixed roadway obstacle.  
While not the main thrust of this effort, this project will further investigate the types of driver 
warning (visual, audio, or tactile) that will be the most effective if the semi-automated solution 
for collision avoidance system is chosen.   

While the research team realizes that additional, automated, means for box height control 
may complicate snowplow maintenance activities, any system that effectively relieves the driver 
of additional cognitive overload, which should reduce both driver stress and fatigue do to sand 
and chemical treatment during plowing operating, in particular when the plow drivers are 
running extended rural plow routes, needs to be to be explored and ultimately implemented. 

As part of the work, an economic analysis will be made to determine the economic feasibility 
of fleet-wide implementation.  Previous work at Mn/DOT include a collision avoidance 
prototype study for low visibility conditions; this included instrumentation of a squad car, 
ambulance, snowplows and transit buses as documented by Estochen (8), Nookala and Estochen 
(20) as well as Alexander, et al (1 and 2).  Nishi and Takagi (2001) have developed a collision 
avoidance algorithm, although this is primarily for a potential automobile in which acceleration, 
braking, and steering can be controlled.  The mechanics of a vehicle impacting a concrete bridge 
girder are summarized in Quio, Yang, and Mosallam (2004); forces, contact time, and 
deflections were modeled using finite element analysis.  Many paper have been prepared in the 
general topic of Map Matching these in clued studies of complex road following using GPS and 
Dead Reckoning, see Aona, et al (3) the work of Joshi (15) Bouju, et al (5) and Dmitriev, et al 
(7) . 

Several authors have explored various imminent collision detection method ranging from 
VORAD radar (Alexander, et al 2004) to Ladar (laser based ‘radar’), optical sensors all the way 
to built-in vision systems for further information see Bostelman et al 2005, Ewald & Wilhoeft 
2000, Hong et al 2004, Nishi & Takagi 2001, and Watanabe et al 2002. 

System integration, especially with respect to fleet management systems, intelligent vehicles, 
and information systems, will be addressed in this research.  Kroeger and Sinhaa (2004) discuss 
the analysis of data and information technology with respect to Iowa DOT’s winter maintenance 
operations and note the potential for improving levels of service and reducing costs.  Vanderhoe 
et al. describe the types of data that can be obtained from Wisconsin DOT’s winter concept 
vehicles, integrated with global positioning, in the “Wiscplow” program.  



 

3 

 

  

1.2 Report Organization 

In this report, Chapter Two will detail the team’s search for, and selection of the sensing 
technology to be employed for this low cost system.  Chapter Three will explore the 
development of obstacle maps starting with the Mn/DOT BrInfo databases and associated 
information and culminating into a system developed to identify all potential obstacles beyond 
just the hard assets maintained by Mn/DOT.  Chapter Four will detail the design and testing of 
the system, including hardware and software, and the efforts used to introduce it into the 
snowplow fleet.  Finally, in Chapter Five the team will summarize the project and make 
suggestions for further work to perfect the system that has been developed. 

  



 

4 

 

Chapter 2: An Exploration of available Obstacle detection 
systems 

2.1 Collision Avoidance Systems 
Vehicle-mounted collision warning systems (CWS) are deployed to improve the ability of 

drivers to avoid accidents. These applications use a variety of sensors to monitor vehicle 
surroundings and alert the driver for conditions that could lead to a collision. Examples of this 
system include forward collision warning, obstacle detection systems, and road departure 
warning systems. Figure 1 shows the applications possible using collision avoidance systems. 

 

Figure 5: Collision Avoidance Systems (US Department of Transportation, 2007e) 
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• Benefits – The Japan Highway Public Corporation (JH) tested administrative pace-
vehicles with millimeter radio wave sensors and GPS technology to lead freeway 
traffic through heavily fogged areas that were subject to road closures. The sensors 
were able to detect vehicles or a corrugated paper case 0.375 x 0.475 x 0.375 m 
through 100 meters of heavy fog. The system attached sensors to leading vehicles and 
allowed groups of freeway traffic to follow using a warning vehicle in the rear. The 
emergency management center monitored the ITS-vehicle using GPS and enabled 
them to track each others position (U.S.Department of Transportation, 2007e).  

• Costs – Table 1 gives approximate unit costs (adjusted) for equipment for 
Commercial Vehicle On-Board (CV) (U.S.Department of Transportation, 2007f). 

Table 2: Equipment Costs for Commercial Vehicle Onboard Equipment 

 
Unit Cost Element 

 
IDAS # 

 
Life 
Years 

 
Capital 

Cost 
$K, 2006 
Dollars 

(Source Year) 

 
O&M 
Cost 
$K/year, 

2006 
Dollars 
(Source 
Year) 

 
Description 

Electronic ID Tag 
 

CV001 10 0.5 - 0.9 
(1995) 

0.01 - 
0.017 
(1995) 

Includes ID tag, additional software & 
processing, and database storage. 
Software is COTS. 

Communication 
Equipment 
 

CV002 10 1.1 - 2.1 
(1995) 

0.007 - 
0.011 
(1995) 

Commercial vehicle communication 
interface and communication device (cell-
based radio). 

Central Processor 
and Storage 
 

CV003 10 0.2 - 0.4 
(1995) 

0.005 - 
0.01 

(1995) 

Equipment on board for the processing 
and storage of cargo material. 

GPS/DGPS 
 

CV004 10 0.5 - 1.8 
(2004) 

0.12 - 
0.6 

(2004) 

GPS for vehicle location. Capital cost 
depends on features of unit. O&M cost 
includes annual service fees. 

Driver and Vehicle 
Safety Sensors, 
Software 
 

CV005 10 0.9 - 1.7 
(1995) 

0.03 - 
0.06 

(1995) 

Additional software and processor for 
warning indicator and audio system 
interface, and onboard sensors for 
engine/vehicle and driver. Software is 
COTS. 

Cargo Monitoring 
Sensors and 
Gauges 
 

CV006 10 0.13 - 
0.27 

(1995) 

0.013 - 
0.027 
(1995) 

Optional on-board sensors for measuring 
temperature, pressure, and load leveling. 
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Electronic Cargo 
Seal - Disposable 

  8 - 10
(2003) 

0.15 -
0.20 

Cost for a disposable radio frequency 
identification (RFID) E-seal that provides 
a complete and accurate audit trail of seal 
status during transport. Low is for 
passive, and high is for active E-seal 
communications. 

Electronic Cargo 
Seal - Reusable

   

 

209 - 486 
(2002) 

  

 

Cost for a reusable radio frequency 
identification (RFID) E-seal that provides 
a complete and accurate audit trail of seal 
status during transport. Low is for 
passive, and high is for active E-seal 
communications. Depending on vendor, 
some E-seals may incur a monthly service 
charge. 

Autonomous 
Tracking Unit 

  0.34 - 0.8 
(2003) 

0.138 - 
0.4 

(2003) 

Chassis or container mounted unit that 
tracks location and condition of assets 
(cost for on-board sensors not included). 
Higher priced units provide greater 
functionality, such as polling of location 
information and increased quantities of 
sensor data. Annual service charges 
include the communications link between 
unit and data center, and information 
services. 

2.2 Automatic Vehicle Location Systems 

2.2.1 Introduction 

Automatic vehicle location (AVL) is a computer-based vehicle tracking system consisting of 
devices which can continuously monitor the location and status of vehicles operating in an urban 
or rural traffic environment (Cutchin, 2005). It is a collection of electronic or electromechanical 
devices used to acquire information about the location of vehicles. The location information is 
then relayed to a central location, where it may be further processed, stored, and used to make 
command and administrative decisions. Typically, vehicle position is stored on the vehicle for a 
short time of seconds or minutes duration and then relayed to the control center in raw form or 
processed on-board the vehicle before it is transmitted.  
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Transit agencies in the U.S. incorporate AVL with other operational functions, including 
computer-aided dispatch, mobile data terminals and emergency alarms. Increasingly, they are 
also using AVL for services that directly benefit transit users. These include among others: 

• Real-time passenger information  

• Automatic passenger counters 

• Automated fare payment systems 

Other components that are integrated with AVL systems include 

• Automatic stop announcements  

• Automated destination signs 

• Vehicle component monitoring 

• Traffic signal priority 

US transit agencies have identified four primary objectives for the introduction of AVL systems: 

• Improved schedule adherence and timed transfers 

• More accessible passenger information 

• Increased availability of data for transit management, and 

• Increased efficiency/ productivity of transit services 

By implementing AVL systems, firms, both public and private, can increase fleet utilization 
and reduce input factors (fuel, labor and capital). AVL systems help in revenue planning and 
efficiency through the use of on-board electronic fare collection. They can also provide seamless 
transfers by implementing and supporting a common or universal fare medium (e.g. a fare card 
that is accepted by all operators in a specific region). Finally, they can also help to improve 
safety on-board vehicles by allowing quick location and response to incidents and emergencies. 

2.2.2 Vehicle Location Technologies 
AVL systems may be implemented using the following basic technologies: 

• Signpost and odometer 

• Radio navigation/location 

• Dead Reckoning 

• Global Positioning System (GPS Satellite Location) 

A number of systems make use of a combination of one or more of the basic categories to 
provide system redundancy. 
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Signpost Systems (Proximity Technology) 

In this system some type of “beacon” (the signpost) are installed at regular intervals along 
the routes (Pletta, Caskey, and Heermann, 1996). The bus carries a transponder that responds to 
interrogation by the signpost when it is in a close range. The dispatcher is then notified that a 
particular bus, with a unique ID number in the system, has passed a known location. When the 
bus reports its location, the distance from the last pole is used to locate the vehicle's position on a 
route. The system can also be run in reverse, with the transmitter on the bus and multiple 
receivers mounted along the bus route. However, if the bus leaves the route, there will be no 
information about the bus, so most transit bodies prefer to have a receiver on the bus. The basic 
principle of direct proximity location technology is as show in Figure 2. 

 

Figure 6: Direct Proximity Concept (Wilson 1978) 

Fixed elements (signposts) that are installed at known operational locations provide the 
vehicle with unique address data in a digital format (Wilson, 1978). The vehicle then relays these 
data through a conventional mobile radio channel to the control center system where it is 
translated into a dispatcher-compatible format. The coupling between the fixed elements and the 
vehicle could be magnetic or electromagnetic. The magnetic coupling system uses magnetic 
studs imbedded in the road surface. The electromagnetic system requires use of radio frequency 
devices mounted along the roadway at a particular height.  

Advantages of Signpost Systems 

• Simple, reliable, low cost vehicle unit implementation 
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• Minimum base station (control center) computer processing 
• Capable of varying system accuracy according to the needs 
• Location data is positive and non-ambiguous at all times 
• Fail-soft characteristics present (i.e, the failure of any fixed location element does not 

degrade overall system operation) 
• Capability of the system to share fixed location elements data to be shared by both public 

safety and private users without compromising the law enforcement data. 
Disadvantages of Signpost Systems 

• The number of fixed elements is inversely proportional to the square of accuracy 
requirements and directly proportional to the size of the operational area. Hence, large 
metropolitan area coverage would require the investment in a large number of location 
elements, with higher initial cost and their inherent continuing maintenance issues and 
problems. 

• Installation of fixed elements could be limited due to local codes or regulations pertaining 
to the use of the utility or street lighting infrastructure. Also, suitable above-the-ground 
sites may not be available in some areas. If the proximity device would require power for 
operation, then high costs would be incurred to provide transformers, watt-hour meters, 
and labor costs for installation of the system components. 

• The fixed location elements would also be susceptible to sabotage or vandalism. 

 

Radio Navigation/ Location Systems 

Radiolocation methods locate a vehicle by direct measurements on radio signals traveling 
between the vehicle and a fixed number of stations. The concept is to determine the relative 
distance differential of the vehicle from two or more fixed pairs of sites and convert the resulting 
hyperbolic lines of position to a geographic reference location (Wilson, 1978). The two basic 
technologies used are: those employing a vehicle transponder (pulse trilateration) and those that 
employ signals from fixed transmitting stations. 

Pulse trilateration technology operation is shown in Figure 3. It makes use of standard 
navigation networks like the Loran C network.  
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Figure 7: Pulse Trilateration Concept (Wilson 1978) 

In this method, the distance between the vehicle and at least three stations is measured by 
determining the radio frequency travel time from the stations to the vehicle and back to the 
stations. For this purpose, two-way radio frequency channels are provided or the vehicle is 
equipped with a transponder which would rebroadcast the signal at some fixed time increment 
after receiving the incoming signal. This information is then relayed to a central location where 
the location determination is made.  

The concept of using radio signals to determine vehicle location is as shown in Figure 4.  
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Figure 8: Fixed Transmitting Stations Technology (Wilson 1978) 

A receiver is mounted on the vehicle which measures the distance differential between 
station pairs and transmits these data through a land-mobile communication system to the control 
center for determining the appropriate geographic location.  

Advantages of Radiolocation Systems 

• Wide area coverage is suitable for both surface vehicle and airborne operations. 
• Capable of providing absolute location. 
• Pulse trilateration technology is independent of conventional land-mobile communication 

links. 
Disadvantages of Radiolocation Systems 

• Primary errors are related to fading or distortion of radio transmissions. 
• Pulse trilateration receivers must be appropriately placed to avoid multipath delay errors.  
• In the presence of tall buildings there could be signal shadowing, which may require the 

use of some direct proximity elements to reestablish location position.  
Dead Reckoning Systems 

Dead Reckoning methods locate a vehicle by computing its distance and direction of travel 
from a known fixed point, as seen in Figure 5. A radio link is used to relay this information back 
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to the base station. The distances are measured using a precision odometer and a compass device 
to measure the azimuth (Wilson, 1978).  

 

Figure 5: Dead Reckoning Concept (Adapted from Wilson, 1978) 

Advantages of Dead Reckoning 

• The basic sensors used are rugged and reliable 
• The primary location function is contained within the vehicle. 

Disadvantages of Dead Reckoning 

• Data errors from sensor readings are affected by various factors like any magnetic field in 
the vehicle, external magnetic variations and deviations, variations in tire pressures, 
wheel slip, and uneven road conditions. These errors result in a cumulative location error, 
and hence they require the use of reestablishment reference locations within the control 
system. Direct proximity devices can be used for a position reset mechanism or the 
uncorrected sensor data could be transmitted to the control center to compare with city 
map data to make error corrections. This would necessitate frequent updating of sensor 
data, the use of voice communications to reestablish vehicle position in case of errors 
exceeding certain bounds, and an additional land-mobile communications channel for the 
data transmission function in the vehicle is needed.  

 

Global Positioning Systems 

The Global Positioning System (GPS) was developed by the United States Department of 
Defense (DOD), primarily for military purposes (Moore, 1994). The fundamental concept of 
GPS is the pseudo-range, which is derived from the measured time of flight of a particular signal 
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from the satellite to the receiver. With simultaneous measurements from at least four satellites, a 
GPS receiver is able to instantaneously compute its 3-dimensional position. Although the clocks 
on board the satellites are in synchronization with the GPS time, the user’s receiver clock has an 
inevitable offset from the GPS time. Since a fourth unknown is needed to model this offset, the 
use of at least four (4) satellites at a time for computation purposes is required (rather than the 
three (3) sites needed for triangulation systems). The pseudo-range is measured using either one 
of the timing codes, which form the basis of the satellite transmission. The civilian ‘Standard 
Positioning Service’ (SPS) is based on the Coarse/Acquisition (C/A) code. These signals provide 
positioning capability with an accuracy of 95% of 100 m horizontally and 150 m vertically. The 
Precise Positioning Service (PPS) is based on the Precise (P) code. It provides positioning to 
around 20 m.  

Figure 6 illustrates the fundamental operation of a GPS device. It implements a time-
difference-of-arrival concept using precise satellite position and on-board atomic clocks that 
generate navigation messages that are continuously broadcast from each of the GPS satellites. 
Each GPS satellite employs an on-board computer and navigation message generator to know its 
own orbital location and system time very precisely (McNeff, 2002). A global network of 
monitoring stations keep careful track of these parameters. Corrections are uploaded to each 
satellite, on a daily basis including orbit position projections for each satellite in the 
constellation, as well as corrections to on-board satellite clocks. 

 

Figure 6: How GPS Works (McNeff, 2002) 

System time is maintained on board each satellite by Cesium and Rubidium atomic 
frequency standards. These on-board clocks are accurate within a few nanoseconds of global 
coordinated time (UTC) which is maintained by the Master Clock at the U.S. Naval Observatory 
(USNO) and are individually stable to a few parts in 10-13 or better. The four satellites for 
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simultaneous multi satellite global coverage require a constellation design comprising 24 
satellites at semi synchronous altitude (about 11000 nautical miles) in six orbital planes, each of 
which is inclined at 55° (see Figure 7) 

 

Figure 7: GPS Operational Constellation (McNeff 2002) 

The real-time accuracy of pseudo-range positioning is greatly improved by the use of a 
differential mode of operation using a second, reference, receiver at a known point (Moore, 
1994). Since the potential accuracy is limited to a few meters, to achieve higher accuracy it is 
necessary to change the basic method of measurement. By removing the timing codes from the 
satellite codes, it is possible to measure the phase of the carrier wave on which the codes are 
transmitted. With a wavelength of the order of 20 cm, a phase measurement to within a few 
degrees could lead to a potential range resolution of the order of millimeters. But, this does not 
lead directly to a range measurement of the same accuracy. The errors due to the clocks, 
atmospheric disturbances and the satellite orbits sometimes exceed this resolution by several 
orders of magnitude. Hence, by adopting a differential relative positioning method the problems 
can be overcome and extremely high position accuracy can be achieved.  

Advantages of GPS 

• Based on the type of service, corrected or uncorrected signals provide sufficient accuracy 
for most transit purposes.  

• Along with good accuracy, GPS is advantageous as it is available everywhere in the 
service area; hence there is no distinction between vehicles on-route or off-route.  

• Speed and direction can also be determined using GPS, which potentially eliminates the 
need for additional sensors.  

Disadvantages of GPS 

• There exists a built in disadvantage to a GPS based system since they require the 
establishment of  line-of-sight references to a minimum of three satellites for 2D position 
location or at least four satellites for 3D position. Hence, bridges, tunnels, or tall 
buildings that block the line of sight to the satellite constallation signals can result in a 
report with no position or one with an inappropriate position.  
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• Also, signals reflected across buildings can cause multipath reception, and errors 
equaling from tens to hundreds of feet in position. This typically happens in a 
“downtown” urban area setting with many tall buildings.  

• GPS signals are also attenuated by foliage. Dense overhanging trees along roads and 
streets present problems to GPS receivers on buses. In a “downtown” urban environment, 
a backup navigation system in addition to the GPS systems is used, typically dead 
reckoning systems.   

 

2.3 AVL System Costs 
The actual cost of any vehicle location system is dependent on the details of the specific 

application being considered (Wilson, 1978). To determine these costs and make a comparison: 

• Stipulate the system accuracy requirements.  

• Determine the number of vehicles that would be pressed into service 

• Consider size of the operational area being considered. 

With the help of this information, the annual cost per vehicle can be determined for each 
technology. Factors that could be considered include: 

• Vehicle unit hardware, installation, maintenance, and depreciation costs 

• Support Unit (e.g. location elements, base station), hardware, software, installation sites, 
installation, maintenance, licensing and permit fees, land line leases, training, and 
depreciation. 

• System Integration and testing. 

For a chosen system performance, system costs can be expressed as a function of the number 
of vehicles to be equipped and the size of the operational area. Figure’s 8, 9, and 10 give the 
estimated annual life-cycle costs (for a 300-foot accuracy requirement) of the three 
representative technologies of Signpost Systems (Proximity Systems), Radio Location (Radio 
Frequency Positioning) system, and Dead Reckoning Systems installed in operational areas of 
25, 100, and 400 square miles. This comparative figure illustrates the effect of area and number 
of vehicles.  
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Figure 8: Annual Life Cycle Cost, Dollars/Vehicle  Vs  No. of Vehicles Over 25 Square 

Miles (Wilson, 1978) 

 

Figure 9: Annual Life Cycle Cost, Dollars/Vehicle Vs No. of Vehicles Over 100 Square 

Miles (Wilson, 1978) 
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Figure 10: Annual Life Cycle Cost, Dollars/Vehicle Vs No. of Vehicles Over 400 Square 
Miles (Wilson, 1978) 

For a small number of vehicles, the main cost is that of the support elements. As the number 
of vehicles, increases the proportional cost per vehicle of these fixed elements decreases, and 
vehicle equipment cost becomes the major factor. Figure 11 depicts the resultant cost 
effectiveness of each technology as a function of the area under operation and the number of 
vehicles.  
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Figure 11: Representative Cost Effectiveness as a Function of Operational Area and 

Number of Vehicles at 300 feet accuracy (Wilson, 1978) 

It is important to note that these cost data are typical, but changes in system performance 
requirements will change the slopes and relationships of the cost effectiveness curves and the 
complex nature of the dispatch and communication interfaces significantly impact the annual 
system operating costs.  

2.4 Selection Factors 
The following factors play an important role in selecting an appropriate AVL system for the 

planned operation (Wilson, 1978). 

• Planned Application- The accuracy and cost of an automatic vehicle location system is 
largely influenced by its planned use. For example in police patrol operations, system 
accuracy associated with the general dispatch function will be inadequate for supervision 
or office safety. Also, it might not be economically feasible to upgrade a system selected 
for the general dispatch function, should the need for higher accuracy be required in the 
future. 

• Vehicle Types- The available mounting space, power and weight constraints would 
determine the specific type of technology solution to be used for any type of vehicle.  

• Number of Vehicles- The number of vehicles to be served by the system would have a 
strong influence on system costs and would significantly impact the complexity of the 
communications network. 

• Communications- With the exception of pulse trilateration systems, all automatic 
vehicle location systems require the use of a land-mobile communications channel, with 
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one system requiring a dedicated channel. The availability of unused digital 
communications channel capacity within the spectrum of existing or planned 
communications system could reduce the location system costs.  

• System Interfaces- The nature of the location system interfaces with the dispatch system 
would impact the complexity, cost and selection of the AVL system. 

• Maintenance- The complexity of the system elements would determine the level of 
maintenance needed within the existing resources of maintenance personnel. Upgrading 
of technical skills or subcontracting could increase system life-cycle costs.  

• Installation sites- A major factor in considering the use of a proximity system is the 
availability of installation sites for proximity units.  

2.5 RFID  

2.5.1 Introduction 

Radio Frequency Identification (RFID) is the next generation wireless communication 
technology that is applicable to various areas including distribution, circulation, transportation, 
tracing, and tracking of products (Min et al, 2007). It is a non-contact technology that identified 
objects which are attached to the tags. RFID readers obtain the information about objects and 
surroundings by communicating with the tag antennas. It has the capability to identify mobile 
objects at high speeds, and can also identify a certain number of tags simultaneously by an anti-
collision mechanism.  Thus its use in a transportation system as a replacement for traditional 
“signpost” merits consideration. 

  RFID is a component of the more general Automatic Identification systems (also 
referred as Auto-ID systems) (Fuhrer, et al. 2006). The term Auto-ID groups the technologies 
that help computers to identify objects, animals, or people. Automatic Identification procedures 
were developed in order to create means of providing information about objects in transit. The 
historical and technological development of these technologies starts from Barcodes, Smart 
Cards, and the very recent RFID technology. Figure 12 shows an overview of existing Auto-ID 
technologies.  
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Figure 12: Auto-ID Technologies (Fuhrer, et.al. 2006) 

• Barcodes- The barcode are comprised of a field of bars and empty spaces, vertically 
printed on a sticker or a product label. The sequence (bars, gaps) as well as the width of 
the bars or gaps are converted into an ASCII (American Standard Code for Information 
Exchange) sequence using optical lasers and a complex set of mirrors. Barcodes 
standards commonly used are EAN (European Article Number) code, which is an 
extension of the widely used UPC (Universal Product Code) introduced in the USA in 
1974, while many other more sophisticated systems have been devised for higher 
information density and range of use. 

[On June 26th 1974 in Ohio, USA, the first product using barcodes, a 10-pack of Juicy 
Fruit chewing gum, was scanned at a check-out counter] 

• Smart Cards- They were invented in 1974 by Roland Moreno. Smart cards are credit-
card sized plastic cards containing a data storage system and a microprocessor. To 
contact smartcards, the reader initiates a galvanic connection between the reader’s 
metallic contact pins and the card contact surface (usually a gold-plated area of about 1 
cm2). After supplying energy and clock pulses, the reader extracts (or writes) data out of 
the card. 

2.5.2 System Architecture 
RFID systems are composed of the three main components (Burdet, 2004); 

• Tags- RFID Tags, also known as transponders (transmitter/responder), are attached to the 
objects to count or identify. In its simplest form, a tag receives its power from the 
interrogation signal, consisting of a microchip to store data and a coiled antenna,. 
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• Reader- RFID Reader, or transceiver (transmitter/receiver) is made up of an RF module 
and control unit, which sends the interrogation signal to the tags. 

• Data Processing Subsystem – This is a computational application or database depending 
on how the data retrieved will be used. 

Figure 13 shows a basic RFID system in place.  

 

Figure 13: RFID Setup (Hont, 2007) 

TAGS / TRANSPONDER 

A tag is a label composed of a micro-chip and an antenna. Tags that are made into adhesive 
labels can be directly attached to parts. Tags in the form of glass cylinders can be implanted 
under the skin of animals and humans. Passive tags cannot emit information until they receive 
their power through the electromagnetic waves emitted from the readers. Active tags have their 
own source of power and are able to send information themselves. Most RFID tags generate 
power directly from the incident radio waves and also use this carrier wave to “reflect” data back 
to the reader. This process is known as backscatter [Bitkom, 2005].  

The ANSI and ISO standards for tags are defined by five (5) classes (Tully, 2006): 

• Class 0 – Factory programmed with a simple ID during manufacturing stage which 
cannot be updated. They are passive in nature, and can be used for anti-theft applications 

• Class 1 – User programmed with a simple ID in the field which cannot be updated. 
Passive in nature, and can be used for stock control applications. 
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• Class 2 – Data can be written to the tag and re-written many times. Passive in nature, and 
usually contain sufficient memory for data logging applications.  

• Class 3 – Tags contain on-board sensors for measuring temperature, pressure and motion. 
Active in nature or battery-assisted as sensors must be monitored when no reader is 
present. Generally used for sensitive cargo. 

• Class 4 – Tags can communicate with each other in the absence of a reader. Active in 
nature and can support ad-hoc networked applications.  

Tags of class 0-3 usually transmit to a reader using inductive coupling (short range) or 
backscatter (long range) techniques. Class 4 tags contain radio transmitters. Tag information can 
be encoded to prevent access by unauthorized readers. Encryption can be performed by the 
reader for Class 0, Class 1, and Class 2 tags. Class 3 and Class 4 tags are able to encrypt locally 
using public-key cryptography. Denial or jamming is possible using rogue tags deployed within 
the field of the reader or Class 4 tag. Spread-spectrum radio technology could be used to mitigate 
jamming.  

RFID Readers/ Writers and Antennas 

Radio Frequency Identification readers perform the interrogation of RIFD transponders/tags. 
Readers and transponders are in a master-slave relationship where the reader acts as a master and 
the transponders act as slaves (Peradovic, and Karmarkar, 2006).  A computer application 
mounted to the transponder reads data from the RFID reader acts as a master unit and sends 
commands to the reader.  In a hierarchical system structure, the application software represents 
the master while the reader is a slave (Figure 14). 

 

Figure 14: Master-Slave Principle (Peradovic, and Karmarkar, 2006) 

RFID readers consist of three main parts that allow them to function in RF and digital 
systems (Figure 15). 

• Control section 

• High frequency interface 

• Antenna 
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Figure 15: Block Diagram of a RFID Reader ( Adapted from Peradovic, and Karmarkar, 

2006) 

RFID readers can be classified by power supply type, communications interface, mobility, 
tag interrogation, frequency response, and supporting protocols. The classification of RFID 
reader based on their power supply is: 

• Readers supplied from the power network 

• Battery powered (BP) readers 

RFID readers classified on the basis of communication interface with peripheral devices and 
based on readers supplied from the power network are: 

• Serial RFID Readers 

• Network RFID Readers 

RFID readers classified on mobility are: 

• Stationary RFID readers 

• Handheld RFID readers 

RFID readers classified on the transponder frequency responses they listen to are: 

• Unique Frequency Response Based 

• Non-unique frequency response based 
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Antennas are connected to electronic control devices; the readers. These generate standing 
electromagnetic fields through which data is received from or transmitted to RFID tags. Data is 
transmitted without the need of direct line of sight to the tag. However, unfavorable conditions 
like metallic environments, or liquids, can cause transmission problems with certain 
technologies. Tags and readers must have compatible frequencies.  

Communication between Reader and Tags

RFID generate and radiate electromagnetic waves. The function of other radio services in the 
vicinity must not be disrupted or impaired by the operation of the RFID systems (Tully, 2006). It 
is important that RFID systems do not interfere with nearby radio and television, mobile radio 
services including police, security services, and industry, marine and aeronautical radio services 
or mobile telephones. Therefore it is only possible to use frequency ranges that have been 
reserved specifically for industrial, scientific, or medical applications or for short-range devices. 
These frequencies are classified worldwide as ISM (Industrial-Scientific-Medical) or SRD 
frequency ranges. The frequency range along with its standards and specifications is shown in 
Table 2. 

Table 2: Competing RFID Band Allocations (Tully, 2006) 
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Electronic Product Code 

Electronic Product Code (EPC) is the equivalent of the Universal Product Code used in 
barcodes and is the internal standard for RFID. The EPC code consists of 64 to 256 bits divided 
into the four (4) fields as shown in Table 3. 

Table 3: The EPC Code used for RFID Applications (Tully, 2006) 

 

The header defines the EPC code type, which in turn defines the lengths of the remaining 
fields. The EPC Manager identifies the manufacturer of the product the tag is attached to, the 
Object Class identifies the type of product while the Serial Number uniquely identifies the 
specific product. The EPC code may be used by Middleware (called Savants) to obtain 
information on the product from the Internet via a back-end database or update that information 
based on reader location or sensor data read from the tag.  

2.5.3 Selection Criterion 

The selection criterion for RFID systems is based on the following factors (Finzenkeller, 
2003): 

• RFID systems that use frequencies between approximately 100KHz and 30MHz operate 
using electric inductive coupling. Microwave systems in the frequency range of 2.45-5.8 
GHz are coupled using electromagnetic fields. Microwave systems have a greater range 
than inductive systems, typically 2-15 m. However, microwave systems require an 
additional backup battery in comparison to inductive systems.  

• Range – The require range available to an application is dependent upon:  

o the positional accuracy of the transponder 

o the minimum distance between several transponders in practical operation 

o the speed of the transponder in the interrogation zone of the reader 

• Security Requirements – The likelihood of a potential attack upon an RFID system by a 
hacker, to get the money or materials, must be evaluated. The applications are further 
sub-divided into the following groups: 

o Industrial or closed applications 

o Public applications connected with money and material goods 
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• Memory Capacity –  The chip size of the data carrier and hence its price is determined 
by its memory capacity. Permanently encoded read-only data carriers could be used in 
price-sensitive mass applications with a low local information requirement. If data has to 
be written back to the transponder, a transponder with EEPROM or RAM memory 
technology is required. EEPROM are used in inductively coupled systems. SRAM 
memory devices with a memory backup are used in microwave systems. 
  

2.6 Collision Warning Systems 

Collision Warning Systems (CWS) are in-vehicle systems that monitor the road conditions 
ahead of the vehicle and alert the driver for a potential risk (U.S.Department of Transportation, 
2005). Certain radar-based CWS use specialized algorithms to interpret transmitted and received 
radar signals that determine the distance, azimuth, and relative speed between the vehicle on 
which the CWS is installed (host vehicle), and the vehicle or object ahead of the host vehicle in 
its lane. If a vehicle is within a predefined closing time threshold of the host vehicle, the CWS 
alerts the driver of an object in its lane with which a collision is eminent. The CWS systems may 
possibility taking automatic action to prevent collision with the object ahead, but with most 
systems currently in use, drivers still are responsible to take corrective action after getting the 
alarm.  

As the time interval to the vehicle ahead decreases, CWS issues a progressively more urgent 
warning. The system’s field of view forms an isosceles triangle with its apex at the front center 
of the vehicle. As the object gets closer to the front of the vehicle, a different range or time 
interval is sensed, and the system then issues a different type of alarm. These warning thresholds 
are set by the system manufacturers. CWS also warns the drivers of system malfunctions and can 
be easily integrated with the on-board cruise control systems. Figure 16 illustrates these 
‘progressive thresholds’ control systems.  

     



 

27 

 

 

Figure 16: CWS Object Detection Ranges and Collision Warning Thresholds 

(U.S.Department of Transportation, 2005) 

Eaton Vorad EVT-300 Radar System 

Eaton Vorad’s EVT-300 radar system provides the projection of the location of obstacles 
relative to the host vehicle (Eaton, 2001). The EVT-300 radar provides range and range rate 
information to targets, along with azimuth information. Previous generations of vehicle radars 
did not provide azimuth information, which minimized their utility as a source of information for 
a conformal driver display. With the azimuth information, the presence of an object along with is 
location is also available. It then becomes easy to process the location of an obstacle into the 
Heads Up Display (HUD), given the location relative to the host vehicle.  

Figure 17 shows the algorithm dataflow for transforming object location relative to vehicle 
coordinate frame to global coordinate frame (Gorjestani, et.al. 2003).  
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Figure 17: Data Flow Diagram for Transforming Object Location Relative to Vehicle 

Coordinate Frame to Global Coordinate Frame (Gorjestani, et.al. 2003)

2.7 Case Studies – Technologies 

This section provides case studies for the use of various intelligent transportation initiatives 
that have taken place about public and private organizations. DGPS based gang plowing used by 
Mn/DOT and other DOT’s for snow and ice removal, 3M’s Opticom priority control system, and 
the Southeastern Michigan Snow and Ice Management program are explained in this part of the 
chapter. 

2.7.1 DGPS-Based Gang Plowing

Gang plowing is used by Mn/DOT to increase the productivity of snowplow operations along 
multilane highways. However, it use is very stressful on the drivers as they struggle keep up with 
the expected performance level. Factors contributing to this operator stress include the low 
visibility caused by localized snow clouds created by the lead snowplow and by impatient drivers 
trying to pass, around and through, the slower moving plows. Tight formations of the snowplows 
are required to keep the plows together and avoid rogue vehicles coming between, while 
controlling lateral spacing.  When properly formed, the passage of snow from the lead plow to 
the following plow is very efficient as the gap between the wing on the lead and the front blade 
on the trailing snowplow is actively controlled at an optimal distance.  

To improve the gang plowing process, a Differential Global Positioning Systems (DGPS) 
based gang plowing system has been developed. This system makes use of the advanced 
technology to allow a trailing snowplow to automatically follow a lead snowplow at a fixed 
distance and speed. This form of advanced technology uses DGPS, digital maps (geospatial 
databases), vehicle-to-vehicle electronic communication, radar, laser, scanner, a driver interface, 
and steering, brake, and throttle control. The trailing vehicle uses the state of the leading vehicle 
as a reference from which it follows the lead vehicle at the programmed speed and distance 
(Alexander, et.al 2005) 
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Figure 18, below, shows the concept of the gang plowing system. The lead vehicle contains a 
small computer, a wireless LAN station adapter, and a DGPS receiver. This equipment is 
installed in a NEMA4 (National Electrical Manufacturers Association) enclosure, and mounted 
on a roof rack which is installed on the lead vehicle. This minimizes its intrusion into the lead 
plow cab and provides a weatherproof enclosure. The trailing plow also has on-board, high 
accuracy geospatial database (digital map). The trailing vehicle can compare its position to the 
global coordinates of the road and follow the leading plow which has departed the road. The 
trailing vehicle receives the differential GPS correction from the base station and sends it to the 
lead vehicle. The lead vehicle sends back its DGPS location. 

 

Figure 18: Gang Plow System Diagram (Alexander, et.al. 2005) 

 

Figure 19: Location of DGPS Antenna and NEMA4 Cabinet on the Lead Snowplow 

(Alexander, et.al. 2005) 
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Figure 19 shows the location of DGPD antenna and NEMA4 cabinets on the lead snowplow.  

2.7.2 3M OpticomTM GPS Priority Control System 

The 3M OpticomTM GPS Priority Control System is implemented to assist authorized priority 
vehicles as they navigate through signalized intersection by providing a temporary right-of-way 
to them.  This is accomplished through a vehicle operator interface (to the system) and by using 
common traffic controller functions. It supports both emergency and transit services, with 
separate priority levels for signal preemption and transit signal priority, hence eliminating 
redundancy and a potential conflict at the intersection (3M, 2007). The Opticom GPS system 
consists of the following components: 

• Vehicle Equipment ( Figure 20a)

o Radio/GPS unit containing a GPS receiver and a 2.4 GHz transceiver 

o Radio/GPS antenna 

o Control Unit 

 

Figure 20a: Vehicle Components (Control Unit, Radio/GPS Antenna, Radio Unit) (3M 

Opticom, 2007) 

• Intersection Equipment (Fig 20b)

o Radio/GPS unit containing a GPS receiver with antenna and a 2.4 GHz 
transceiver with antenna 

o Phase Selector 

o Card Rack/Input File 
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o Auxiliary Interface Panel 

o Auxiliary Harness 

 

Figure 20b: Intersection Components (GPS Receiver/Radio, Phase Selector) (3M 

Opticom, 2007) 

The vehicle equipment is mounted on the authorized priority vehicle. The GPS receiver on 
the vehicle acquires position information from the GPS satellite constellation. This information 
is used to compute the location, speed, and heading direction of the vehicle. Using this 
information a priority request and the state of the vehicle’s turn signal is broadcast using the 2.4 
GHz transceiver.  

The transceiver equipment receives the radio transmission from the vehicle equipment. 
The intersection equipment then compares the information being received from the vehicle to the 
parameters stored in the intersection equipment’s memory. If the vehicle that is heading towards 
the intersection along a predefined approach corridor and is requesting preemption, and it has 
met all other programmed parameters, the corresponding phase selector output is activated. This 
output is then given as a traffic controller preemption input. When activated, the controller cycles 
to grant the requesting vehicle a right of way by setting a green light in its approach direction, or 
holding the green light if it is already set.  Either condition allows the authorized vehicle to pass 
through the intersection without stopping. 

 Power and logic wiring for the phase selector is provided by the card rack/input file which is 
plugged directly into a slot in the traffic control unit. The auxiliary interface panel provides 
additional connections for monitoring the green phases and also provides additional priority 
control outputs. The auxiliary harness is used to provide additional connection for monitoring 
green phases when the auxiliary interface panel is not required..  

Features 
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• Saves time and money in installation 

• Integrates easily into current cabinets 

• Uses advanced software to aid implementation and management 

• Minimized disruption of traffic flow 

• Creates smooth, open path to the future through upgradeable firmware 

• Improves safety by eliminating priority conflict at the intersection 

• Integrates easily with other on-board devices 

• Provides precise activation  

• Enhances transit information through expanded coding capability and call history logging 

• Enables automated operation by interfacing with AVL systems for conditional priority 

• Creates a smoother ride and increases fuel efficiency by reducing stop and go braking and 
accelerating 

2.7.3 Southeastern Michigan Snow and Ice Management- Michigan 

The Southeastern Michigan Snow and Ice Management (SEMSIM) project introduced 
technologies which have resulted in safer roads across the region and more efficient use of 
resources for the partner agencies, like Road Commission for Oakland County (RCOC), Wayne 
County Department of Public Services, the City of Detroit, and the Road Commission of 
Macomb County. The SEMSIM technologies include: 

• Satellite-based GPS vehicle tracking devices – Each vehicle is equipped with a tracking 
device that allows satellites to provide real-time vehicle location, direction, and speed. 
There data is then fed continuously to the snow manager’s computer, allowing the 
management to see where the trucks are at all times. 

• Air and Pavement Temperature Sensors – Several sensors mounted on each truck 
provide air and pavement temperatures to help determine if salting is needed. This sensor 
which uses an infrared beam to check the pavement temperature is mounted on the 
driver’s side rear-view mirror.  

• Plows sensors – Sensors are installed that provide information on whether the front and 
underbelly plows are down.  

• Computerized salt spreaders – These spreaders efficiently regulate the use of salt which 
negate unnecessary salt applied on roads. The salt data is send back to the snow managers 
for data review and helps regulate the spread rate based on the vehicle speed. 

• In-vehicle dashboard computer displays – Trucks are equipped with a dashboard-
mounted computer display, known as in-vehicle unit (IVU) that provides two-way 
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messaging for the driver to receive route instructions, assignments, and provide 
information about weather conditions, vehicle problems, need for refilling salt. These 
messages can be sent using push buttons. 

• 900 MHz radio system – Suburban Mobility Authority for Regional Transportation 
(SMART) is sharing its advanced radio-system with the SEMSIM partners for no 
additional cost. This state-of-the-art system links the IVU en each vehicle with the 
computer base stations at the garages. SEMSIM in-vehicle computers continuously send 
data to the base stations about weather conditions, truck activities, etc. SMART benefits 
from this by letting its dispatchers know about road conditions during winter storms, 
helping them to make better routing and scheduling decisions.  

• Customized computer software – SEMSIM’s map-based computer interface provides 
snow managers with real-time data about each truck. It also helps the playback and 
review of winter storms to help identify potential improvements. Storm statistics like 
drive hours, truck miles, and amount of salt used are summarized in tabular reports.  

Table 4: Summary of Technological Advantages and Disadvantages of Various 
AVL systems 

Technology Advantages Disadvantages 

Signpost 
Systems 

Fail-Soft Characteristic (Failure of 
one fixed location element does not 
degrade overall system operation) 

Fixed Elements are susceptible to 
vandalism 

Radio 
Location 
Systems 

Pulse Trilateration technology is 
independent of mobile 
communication links 

Signal shadowing due to urban 
environment, and needs signal 
boosting by placing receivers at 
appropriate locations to avoid 
multipath delay 

Dead 
Reckoning 
Systems 

Primary Location function is 
contained in the vehicle and not 
equipment on external technology 
like satellites.  

Sensor readings from wheel can be 
distorted by external magnetic fields 
or road conditions. 

GPS 

Speed and Direction can also be 
determined, hence no additional 
sensors are needed 

Signal attenuation in urban 
environment due to multipathing and 
in rural environment due to foliage 

RFID 

RFID allows the improvement of 
data quality, items management, 
asset visibility, and maintenance of 
materiel 

Initial investment cost is high for 
transportation applications. 
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Table 4 provides a summary of technological advantages and disadvantages of various AVL 

systems. 

2.8 Summary 

This chapter provided a review of the literature for the Intelligent Transportation System 
setup, as outlined by U.S.Department of Transportation. Automatic Vehicle Location 
technologies like Global Positioning System (GPS) were introduced for the benefits and 
disadvantages that they provide. RFID as a technology helps in asset tracking and management. 
Organizations like Mn/DOT, SEMSIM are making use of the AVL technology to improve fleet 
operations for snow and ice removal. 3M Opticom priority system is capable of providing 
emergency response vehicles a safe passage for increasing their efficiency. These technologies 
were explored as part of the literature review effort, to drive towards defining a workable 
solution for the fleet deployable solutions to the dump box/obstacle collision avoidance problem. 
While each of the systems explored have their advantages for solving the proposed problem, our 
team’s major driving force, low cost, worked against nearly all of them.  To this end, then, the 
team focused on an initial design that would combine a low cost on-board GPS solution, mated 
with a backup system that would use passive RFID tags mounted at the approach to hard 
Mn/DOT assets (bridges, tunnels, pedestrian walkways, etc.) and readers mounted on plow 
trucks.  But, even this simplified system, proved too costly as a reader capable of detecting and 
reading the passive RFID tags would cost about $2500 per snowplow truck, and a significant 
investment in infrastructure would be needed to build the network of RFID tags into the 
roadways.  In the final analysis, then the team chose to develop a system that would use a low 
cost GPS detector and a map coordinates based obstacle map integrated using an on board 
hardened computer controller.  In the next chapter the team will explore the development of 
obstacle maps initially by extraction of data from various Mn/DOT databases using a Visual 
Studio 2005 program and then using an controller application that was operated by the on-board 
controller designed for use during actual plow operations. 
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Chapter 3 
Building Obstacle Maps for Use with the On-board Collision 
Avoidance Controller 

3.1 Introduction 

When the team began this project, it was assumed that the best source of obstacles would be 
the Br-Info database that is maintained by Mn/DOT.  This database included relevant 
information about all of the bridges inventoried in Minnesota, or in our case, the Mn/DOT 
District 1 region.  It listed bridge clearance heights, widths, and most importantly, physical 
location in longitude and latitude listed as degree-minute-second (dms) formats.  Using this list, 
which the team copied into MS Access, a Visual Studio 2005 (VBasic.net) program was 
developed to extract the bridge locations which were written into an obstacle map that could be 
easily transferred to the onboard controller. 

3.2 Building the Extraction Software  

When the team obtained the District 1 Br-Info database, they also obtained two other data 
sets from officials in Duluth.  These were the snowplow route database (“Plowroute” database) 
which indicated starting and ending mileposts along the highways that Mn/DOT needed to plow 
in the district and a database (“mileposts” database) that listed longitude and latitude of (nearly) 
all the mileposts along the state maintained highways in the district.  When the locational 
information was carefully checked, the team determined that while the Br-Info database bridges 
were recorded in ‘dms’ geometry for all of the districts mileposts were stored in a decimal degree 
format.  This required that the extractor program be able to convert between these two 
designations as it selected bridges that would belong to each route within the district.   

The program began by building a user interface that allows the database manager to observe 
the process of bridge extract to all of the routes within a given Mn/DOT District.  The user 
begins the program by entering the total number of plow routes within the district.  The VBasic 
program then opens the plow rote database and extracts each highway on a given route and the 
starting and ending mileposts along all of the routes.  In the case of the plow route databases 
provided to the team by District 1 personnel, the routes (of which 103 were listed) in this 
database were, surprisingly, all single roadway maps.  While the team suspected that these were 
not in fact the most recent plow route listing, it simplified the extraction problem and therefore, 
they were used.  After the highway numbers and distances (in the form of Starting and Ending 
mileposts) belonging to each plow route were obtained by extracting information from the 
“plowroute” database the program entered the “mileposts” database to extract the specific 
geometry (longitude and latitude) for all to the mileposts along the designated highway for any 
given plow route. Then, the Br-Info database would be searched for any bridges with a clearance 
greater than zero – indicating that the bridge was in fact an overpass – and who’s geometry was 
between each successive pair of mileposts.  Because a one mile grid is relatively coarse in urban 
areas and could inadvertently extract bridges that are not along the highway under consideration 
(ones who may belong to other plow routes), before entering the Br-Info search each milepost 
distance pair was divided by 10 to narrow the search grid to the approximate width of an 
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intersection and then converted to the dms format.  While this computation overheard increased 
search time, this time was not a problem since the obstacle files were created offline long before 
they needed to be loaded to the on-board controller. 

After the appropriate bridge geometries were extracted for each plow route to a datatable 
within the application, the geometry was written to a text file given a name included the specific 
route number from the “plowroute” database.  Because the standard used by most GPS system 
commercially available generated geometric position in yet a third format for longitude and 
latitude (degree and decimal minutes) a final conversion on the obstacle geometries was 
performed before the targets were written to the text file for the plow route.  As each of the 
obstacles in the data table were written into the text file, the letter “B,” designating bridge, was 
appended except for the last obstacle which had the letter “X” appended indicating the last 
obstacle or the plow is about to exit the route.  A full listing of the Visual Studio 2005 
(VBasic.net) application is presented in Appendix A. 

3.2.1 Problems with the Data Extraction Application 

When this application was applied to the three databases supplied by District 1 personnel, 
several problems arose, these fell into categories: missing individual milepost values or missing 
highway designations in the “mileposts” databases.  While troubling, since tests were to be 
conducted on a route that were potentially fully covered the team felt that testing could be 
completed.  Once initial testing was conducted, along a route called 101 in our plow route 
mapping that ran along I35 through downtown Duluth from West 40th Avenue to East 26th 
Avenue, the onboard controller was unable to locate many obstacles.  As the team further 
checked into the problem several items were discovered.  First, the “plowroute” database we 
were provided was not, in fact, up to date and only the several I35 routes and selected other 
routes along major trunk highways were single highway routes, most routes included parts of 
several highways, as the team had suspected.  Again this was not fatal for testing at the early 
stages since the plow route the team was assigned for testing was in fact the same one the team 
had numbered 101 (even though the number in District 1 records had changed).  A further 
problem was discovered, it seemed that all the bridges (and tunnels) constructed when I35 was 
extended beyond W. 5th Avenue in Duluth were not included.  This problem was traced to the 
Br-Info database which was an older version rather than the most recent one, a problem related 
to homeland security issues.  Finally, a fatal problem with the original approach to the project 
was identified: not all potential collision obstacles are bridges!  Other permanent obstacles that 
could have collisions with raised sand boxes like pedestrian crosswalks, highway road signs, 
overhead power lines, etc. and temporary obstacles like construction equipment and signs, and 
even tress or sagging power, telephone or cable television lines that would never be found in the 
a regular database of “hard” Mn/DOT assets (like the Br-Info database) should also be available 
to the onboard controller.  Because of the myriad of problems, the team realized that a more 
direct means for creating obstacle files would be needed.  This solution is termed the “Trainer” 
or TIBIAS (Trainer for Impending Box Impact Alert System), and the need to develop such an 
application delayed the completion of this project significantly.  Steps taken to build the Trainer 
will be described below. 
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3.3 Development of the Trainer Application 

The trainer system was designed to cope with the (potentially) frequent changes in the route 
files stored on the controller. The trainer system should be able to make changes to existing route 
data on the controller and create new routes and add them to the route database on the controller 
as needs change.   

For the Trainer program the team used a nearly identical code as that of the IBIAS 
(Impending Box Impact Alert System) system. The difference was that the “Lower Box”, “Raise 
Box” or “Moving” function were not enabled.  The Input function was modified to display the 
current GPS position on the computer screen whenever a certain key on the controller is pressed. 
To use the trainer program, the controller has to be connected to a personal computer through the 
same cable used to program the controller. Once the computer is connected to the controller, the 
system can be mounted on any vehicle, thus it can be used in any service vehicle be it snowplow, 
service truck, or car. 

  To modify an existing route, i.e. adding obstacles, the user first has to input the route 
number to be modified and the computer screen displays the route number on it. Now whenever 
an obstacle has to be added the vehicle is driven under it and the operator must press any key on 
the controller. Now the (connected PC) computer screen displays the just entered GPS location 
with route number. Once completed, the operator just copies the GPS location onto a text file; 
adds a prefix “B” to the GPS location, this prefix B is used to keep track of the number of 
obstacles on a route, and appends it to the routes text file. Multiple readings can be taken and 
added to a route file at the same time. Once all the GPS locations have been modified by adding 
the prefix, all these readings can be appended to the existing route file. All these values have to 
be added before the last obstacle in the file (the obstacle identified with the prefix X as noted 
above). Now the operator must compile the program from the PC back to the OP7200 controller 
with this modified route file, which loads the revised route file to the controller’s memory. 

To create an entirely new route, the operator must first make a new text file with the route 
number as its name. Then compile the program (from PC to OP7200 controller) so that this route 
file is stored in the controller’s memory. Now select the new route number of the route file to be 
generated. The operator then must again move the vehicle under each of the obstacles that need 
to be added to the obstacle list, press any key on the controller and hold it down till the current 
GPS location is displayed on the computer screen. Once done with taking the locations for all the 
obstacles for the new route add a prefix B these GPS locations as mentioned in the previous 
paragraph and follow the same steps as above. Since this is a new route, the last obstacle reading 
should be marked with the prefix X, signifying the end of the file.  
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Figure 21:  Flowchart for Trainer System 

After copying all of the obstacles (with their appropriate prefix) into the local route text file, 
the operator must compile the program, from PC to OP7200, with this new route file, this would 
load the new route file to the controller’s memory and make it ready to be used to detect 
obstacles. Figure 21 explains this process with the help of a flowchart.  Once the team had good 
obstacle files it was able to perform testing on actual snowplow routes.  In the next chapter a 
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detailed discussion of the development, design and programming of the on-board system will be 
presented.  
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Chapter 4 
Development of the IBIAS 

Because of limitation in cost and space within the cab of a plow truck, a prototype 
onboard controller was constructed and tested by the team, it can be seen in Figure 22, below. 

 

 

Figure 22: IBIAS System Mounted into Mn/DOT Snowplow Being set for Data Entry 
(right), the Controller at left is the Box/Plow/Chemical Controller used by the Driver 

The first task was to assemble the various pieces of hardware together to develop the solution. 
The solution developed was a fully functional, stand alone unit containing hardware capable of 
accepting User, GPS and Magnetic switch inputs to alert the plow operator to the presence of 
dangerous obstacles if and when required. 

 This controller required the creation of a design to integrate the various hardware 
products with each other and a software solution to use this hardware as required. This chapter 
discusses the hardware and software design in detail. 

4.1 The Onboard Controller 

The research team chose the Rabbit Semiconductor OP7200 as the human-machine interface 
(HMI) because it was easy to program (it was supplied with “Dynamic C” programming 
language) included a touch screen for operator communication with the controller, runs on a 
wide range of dc power meaning it will operate using plow truck power and includes a full 
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compliment of digital input and output ports that are directly recognized by the controller. A 
Garmin 15 H was selected as the GPS, again for its low cost, its ability to accept plow truck dc 
power input, its ease of programming.  The final deciding factor was that this GPS unit has the 
ability to continue dead reckoning its position for several seconds (up to 30 seconds) even if it 
loses it connection to the satellite operational constellation.  The teams’ final hardware choice 
was the GE Security 166 magnetic switch.  This device was selected as proximity sensor to 
identify the position of dump box because of its hardened construction and the fact that it 
designed for heavy equipment application.  A photograph of the magnetic switch mounting is 
visible in Figure 23 below. 

 

Figure 23: Switch Components Mounted on an Early Model Adjustable Bracket. The 
Lower Unit is Connected to the Controller (and Truck Frame) while the Upper Unit is a 

Magnet that Positions the Switch (opened/closed) Depending on Dump Box Position 

The following section explains the process of interfacing various pieces of hardware to develop 
the proposed solution.  

The Rabbit semiconductor OP7200 was selected to be the control center for the solution as it 
has controller and programmable memory. A method for connecting all the supporting hardware 
to OP7200 had to be developed. As mentioned earlier, OP7200 has 19 digital input ports and 
eight digital output ports. This section describes how these ports were used to interface each 
hardware component to form the proposed solution. 

 Figure 24 shows the wiring diagram of how the team connected the selected hardware to 
for the IBIAS solution. 
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Figure 24: Wiring diagram for the proposed solution. 

The hardware selected by the team was identically feasible with power requirements, so the 
team did not require a separate piece of hardware for power regulation. The OP7200 could use 
the 12 VDC power supply on the truck; however a one (1) Amp fuse for the GPS unit was added 
as a measure of precaution for the GPS circuits. The team used a 12 VDC relay and several quick 
connectors other than GPS, HMI and Magnetic switches as shown as “colored boxes” in Figure 
24.  The quick coupling connectors were used to wire various pieces of hardware together easily. 
This made initial connections simple and provided flexibility of changing connections if 
required. When individual costs were summed, the total cost of the proposed solution was 
approximately $575 while was slightly above our target figure, the team believes that this is an 
acceptable overage because the hardware chosen is road hardened and should be usable for 
several years on a plow truck. 

4.2 Software Solution 
When the team began to develop their solution, the team envisioned a controller that could be 

operated in a fully automatic mode that would remove all required dump box control from the 
driver.  To achieve this solution the controller and its associated software would have to be able 
to sense approaching obstacles, and determine if any action was required to lower the box to a 
safe level from the position previously set by the driver.  If the controller actually forced the box 
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downward to a safe height, it should then be able to return it to the preset height after the vehicle 
passed the obstacle.  While in this initial solution a means to move the box was not incorporated, 
the team programmed the application to do the automated action should further automation be 
made available at a later time.  Thus, a modular approach was developed and both a ‘lower box’ 
function as well as a ‘raise box’ function were programmed.  By them being encoded as 
modules, the raise box function could be easily disabled, as it was in intermediate testing, by 
removing only a single reference line in the program while the module could be easily 
reactivated should full automatic control become desirable. In this semi-automated edition of the 
control, the driver is alerted to take action, using a built in buzzer to both lower and raise the box. 
When the team considered user friendliness for the operator of the plow, the fact that plow route 
can be operated from multiple operational directions, and considering that routes can even be 
closed geometries that have single or multiple loops, the team decided to use a  non-directed 
search method to explore upcoming obstacles.  This method, which was computationally 
intensive, meant that a plow route could be entered at any point and from any direction and 
upcoming obstacles could always be detected.  Using this approach, if an plow operator and their 
vehicle is assigned to plow to bare pavement over their route, they can repeatedly plow the route 
or backtrack along the route, after a turnabout, without having to reset the control.  

The sections below describe the process of software development for the proposed solution. 
The team chose to develop a modular solution so that functionalities could be added or removed 
if and when required. The team divided the software development into four (4) phases: 

1. Planning. 
2. Design /Develop Prototype. 
3. Implementation. 
4. Testing / Evaluation. 

4.2.1 Planning 

The first phase of software development is planning. The goal of planning is to understand 
the objectives and constraints of the proposed system. First of all the team had to identify the 
stake holders involved in this project. Then the team held interview sessions with the stake 
holders to gather the requirements. After conducting interviews with all the stake holders the 
requirements were finalized with the consent of the stake holders. The objective was to develop a 
collision avoidance system that uses the current GPS coordinates and bridge coordinates from a 
database to identify upcoming obstacles. If an obstacle is coming up and the dump box is higher 
than the safe clearance height, it should be lowered. The HMI controller had to be programmed 
to handle the GPS data acquisition, bridge database, I/O from the snow plow and a user interface 
to accept user input and alert the user. One of the major constraints for the proposed system was 
installation cost. For the pilot system more expense was allowed (Pelzer et al., 2007). Another 
constraint for this project was extreme weather conditions. The snow plows operate in extremely 
cold and wet conditions, thus limiting the type of technology that can be used.  The snow plows 
spread a magnesium chloride mixture which is very corrosive. This influenced the team selection 
of hardware on the vehicle exterior; it had to be corrosion resistant. 
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4.2.2 Developing the prototype

Once all the objectives and constraints were identified, the team started developing a 
prototype for the proposed solution. The team began with developing a flow chart shown in 
Figure 25. 

 

Figure 25: Prototype system Flowchart 
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The flowchart states that a 400 meter offset distance was used as the value to initiate lower 
and raise the box actions for collision avoidance. The value of 400 meter is based on the 
following calculations: 

Time to lower the box from fully raised position to fully lowered position (t) = 15 sec. 

Buffer time added for safety (bt) = 5 sec. 

The speed of a snow plow while in operation (max) (v) = 45 mph 

Safe distance (sd) = (15 + 5) * (45 miles / hr) * (hr / 3600 sec) 

= .25 miles ≅ 0.4 km. or 400 m 

 

Using these calculations the team made sure that if an obstacle was identified within about 400 
meters of the snowplow, with the dump-box fully raised, that collision can definitely be avoided.  
The driver would almost never have the box in its completely raised position while moving and it 
would not be required to be completely lowered to avoid collision. Thus 400 meters provides the 
controller solution plenty of time to lower the box once an obstacle is identified. 

4.2.3 Implementation 
The program begins with calling the Input function “inputfunc()”  which is used to accept 

a route number that has to be plowed from the user. This function uses the touch screen 
capability of the OP7200 to accept user input. This function returns an integer value to the main 
program which in turn is used to extract the correct obstacle list from the database for the routes. 
Figure 26 shows excepts from inputfunc(). 
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Figure 26: Excerpts from inputfunc() 

When the main function receives the route number it passes it to function named 
“Relate()”. This function returns a variable of type long. This function then uses a switch 
statement to identify the proper route file from the database. This route file is copied into the 
cache memory. Figure 27 shows excerpt from Relate(). Once the entire route data is stored in 
cache the GetPosition() function is called by main. This function extracts the current location 
from the GPS receiver and converts it to the desired format. The team identified 
Degrees/Decimal Minutes as the desired format for all GPS readings. All of the Mn/DOT 

while (!tscVKBAttributes(vkbX,1,500,100,1)); 

 

// Create 5 buttons to be displayed and used on the LCD 

 

btnCreateText(userX,1,40,10,230,80,1,1,&fi10x12,"ENTER A\nROUTE 
NUMBER"); 

btnCreateText(userX,2,40,150,230,80,1,1,&fi10x12,"ENTER THE \n NEW 
BRIDGE"); 

 btnAttributes(userX,1,0,0,0,1); 

 btnAttributes(userX,2,0,0,0,1); 

   btnMsgBox(0,0,320,240,NULL,"",1,0); 

final = 1; 

   while (final) 

   { 

   costate 

   { 

  // Wait for a button to be pressed 

   waitfor ( ( btn = btnGet(userX) ) >= 0 ); 

          switch (btn) 

   { 

        case 1: 

   //Display the Virtual keyboard for use with ints 

waitfor ( tscVKBGetInt(vkbX,&iVal,-
32000,32000,6,&fi14x16,&fi10x12, 

     "ENTER ROUTE") ); 

 

   printf ( "Route Number = %d\n",iVal ); 

                

final =0; 

                break;  
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databases used different formats to store GPS location information. 

 

Figure 27: Excerpts from Relate() 

 

Figure 28: Excerpts from GetPosition() 

long relate(int ip) 

{ 

 

 fontInfo fi14x16,fi10x12,fi; 

   glXFontInit(&fi, 17, 35, 32, 127, Font17x35); 

 

    switch(ip) 

   { 

 

        case 1 : 

         printf("\n in the case\n"); 

         return t01; 

         break; 

        case 2 : return t2; 

         break; 

        case 3 : return t3; 

         break; 

        case 4 : return (t4); 

         break; 

GPSPosition getposition() 

{ 

 char sentence[MAX_SENTENCE]; 

 int input_char, count; 

 int string_pos; 

 char dir_string[2]; 

   float distance; 

   serCopen(4800); 

   string_pos = 0; 

 dir_string[1] = 0; 

 

 //receive and parse GPS data 

 while(1) 

 { 

  input_char = serCgetc(); 

      if(input_char == '\r' || input_char == '\n') 

  { 

   sentence[string_pos] = 0; //add null 

     if(gps_get_position(&current_pos, sentence) == 0) 

   { 
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The main function checks if the box is in raised position. If the box is up then the main 
function compares the value received from the GetPosition() function with each obstacle on the 
route stored in the cache memory, Figure 28.  If any obstacle is less than 400 meters away, then 
the main program calls another function called “Moving”. The moving function checks if the 
truck is in motion. One of the assumptions made by the team was if the truck is moving at less 
than five (5) mph, it might not be safe to lower the box. This was a precaution taken by the team 
to avoid injury to workers working around the truck. To check this the moving function accepts 
two readings from the GPS at an interval of 1 sec. If the distance between these two readings is 
less than two (2) meters it means that the speed of the truck is less than five (5) mph.  If the truck 
is not moving the driver would not be alerted to lower the box. It was added to make sure that 
nobody gets hurt while performing repair or maintenance on the truck. Figure 29 show excerpts 
of the Moving() function. 

 

Figure 29: Excerpts from Moving() 

If the truck is moving then the LowerBox() function is called. The function alerts the user by 
flashing a message on the LCD screen and with a beep. It keeps on beeping at the user until the 
box is lowered to the safe height. Figure 30 shows excerpts from LowerBox function.  

int moving(void) 

{ 

 char sentence[MAX_SENTENCE]; 

 int input_char, count; 

 int string_pos; 

 char dir_string[2]; 

   float distance; 

 

 

 //calculate distance from known coordinates 

 GPSPosition ar1, ar2; 

 serCopen(4800); 

 string_pos = 0; 

 dir_string[1] = 0;     

 

…… 

 

distance = gps_ground_distance(&ar1,&ar2); 

  if(fabs(distance) > .002) 

  { 

     return (1); 

     // printf("Moving"); 

   } 

 else 
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Figure 30: Excerpts from LowerBox() 

Now if the box is alerted down by the controller, and the next obstacle is more than 400 
meters away, and the truck is moving, then the main function calls the “Raise box” function. 
This function alerts the driver to raise the box by flashing a message on the LCD display and 
beeping with a different signal than lower box. Figure 31 shows excerpts from RaiseBox(). 

The entire code including the functions discussed in this section can be found in Appendix B. 

void lowerbox(void) 

{ 

mov = moving(); 

   if(mov == 1) 

   { 

   do 

   { 

     digOut(1,0); 

      costate 

    { 

      glSetBrushType(PIXXOR); 

       glPrintf(100,25,&fi,"Lowering"); 

          glPrintf(135,65,&fi,"Box"); 

          waitfor (DelayMs(500)); 

          for(i=0; i < 3; i++) 

          { 

             for(delay = 0; delay < 8000; delay++); 

             buzzer(1); 

   for(delay = 0; delay < 10000; delay++); 

            buzzer(0); 

         } 

 } 

   }while(digIn(12)==1); 

   }digOut(1,1); 

} 
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Figure 31: Excerpts from RaiseBox() 

void raisebox(void) 

{ 

   mov = moving(); 

   printf("in raise"); 

   if (mov == 1) 

   { 

   do 

   { 

    digOut(2,0); 

      costate 

    { 

         glSetBrushType(PIXXOR); 

         glPrintf(100,25,&fi,"Raising"); 

         glPrintf(135,65,&fi,"Box"); 

         waitfor (DelayMs(500)); 

         for(i=0; i < 3; i++) 

         { 

   for(delay = 0; delay < 2000; delay++); 

   buzzer(1); 

   for(delay = 0; delay < 3000; delay++); 

   buzzer(0); 

       } 

  } 

   }while(digIn(13)==0); 

  } digOut(2,1); 

} 
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4.3 Testing / Evaluation of the Software 

While testing and evaluation is the last step in software development cycle, the team spent a 
large block of time performing these functions.  Testing was completed in several steps and lead 
to the discover on many of the problems already explained in Chapter Three and ultimately the 
development of the TIBIAS solution and the construct of a test route away from busy highways. 

After the IBIAS software was developed the team had to test it to make sure everything was 
working in the predicted and desired manner. This section discusses the process of software 
testing performed by the team.  The basic idea of testing is to make sure that: 

 The software is in compliance with the customer needs. 

 The software runs without any errors. 

The main task of this sub-section is to make sure that the program covers all the requirements of 
the system. These requirements were gathered by interviewing various stakeholders at Mn/DOT 
and represent the essential system requirements. These requirements are listed in Table 5. 

Table 5: Controller System Requirements 

I. Provide some kind of alarming system to alert the driver.   

II. Alert the driver to lower the box if an obstacle is coming up. 

III. The system should alert the driver with enough time to lower the 
box. 

IV. Alert the driver when it is safe to raise the box. 

V. The system should not alert the driver to lower or raise the box 
when stationary. 

To lower or raise the box some kind of beeper, for the purpose of alerting the driver, was 
required. The team decided to use the speaker built into the OP7200 controller. Two different 
types of beeps were created so that the driver could distinguish when they were to lower or raise 
the box. Lower box functionality was the more important of the two functions considering the 
safety factors the team was addressing. So the beep for the lower box had to sound more urgent. 
At the same time a visual message on the controller screen was also displayed. This message 
would indicate “lower box” or “raise box” thus making sure the users know exactly what to do 
when they hear beeping. This beeping functionality is a part of lower box and raise box 
functions. The lower box used the beeping to alert the user if an obstacle was less than 400 
meters away.  Another important functionality was to provide a way to alert the driver to raise 
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the box. The team developed a function dedicated to this functionality. This function becomes 
active once the box is lowered by the controller. This function performs two comparisons: 

1. The plow has passed the current obstacle by more than 100 meters. 
2. There is no obstacle less than 400 meters away. 

If either of these two conditions is not satisfied then it is not safe to raise the box. If both of 
these conditions are satisfied then this function alerts the driver to raise the box by sounding an 
alarm. This alarm is different from the one to lower the box. The function also flashes a message 
on the controller output screen. 

Another requirement was the system should not alert the driver to lower or raise the box if 
the truck is stationary. This was a safety feature as someone might be working under the dump 
box performing maintenance or repair functions while parked within 400 meters of an obstacle. 
From interviewing stakeholders at the workshop, the team realized that the truck might even be 
moving a bit while performing maintenance operations. Based on this input the team decided that 
if the truck is moving slower than five (5) mph it should still be considered stationary. To 
provide this functionality, the programmer created a function which would extract two GPS 
readings, at an interval of 1 second then compute the distance between these, and compute the 
speed of the vehicle. If the computed speed is more than five (5) mph, the program should not 
alert the users to raise or lower the box, thus another user requirement was met.  

4.3.1 Testing for Programming Errors 

The team created a list of all the functions in the software. While keeping software 
engineering design in mind, various functionalities were built up as separate modules. 
Modularity provides the team with the option to add or remove certain functionality if required 
without redefining the fundamental program structure. This also made the testing and debugging 
easier to perform, which will be explored in this section. Table 6 includes a list of all the 
important functions that needed testing. 

Table 6: A List of All Important Functions That Needed To Be Tested 

I. Input function User interface for route to be worked 

II. Get (long./lat.) Position of snowplow to compare 

III. Lower Box since snowplow is approaching obstacle 

IV. Raise Box since obstacle is cleared 

V. Check that Snowplow is Moving 
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In this section each of the functions is tested individually for logical and programming 
errors. 

Input Function 

The main task of the input function is to receive an input from the user, store this input, and 
based on this input load the appropriate text (.txt) to the controller’s cache or active memory. To 
test this function the team would check if the controller was able to store the user input correctly, 
and if it was able to load the appropriate route file based on the user input. To check the user 
input the controller was required to print the variable (to the screen) in which the user input was 
stored. Next, the team had to make sure that proper route file is being pulled up and stored in the 
cache. To check this, the team required the controller to print the route file out on the screen so it 
could be compared to the respective route file in the route database. Once both these tests were 
successfully performed, the programmer was confident that no programming errors existed in 
this function. 

Get Position 

This function is used to acquire data values from the GPS unit, store it in a local variable, 
extract the GPS coordinate from this stream, and convert it into the required GPS coordinates 
format i.e. Degrees and Decimal Minutes. This function is called whenever a GPS position is 
needed; this makes it one of the most important functions in the program. First, it assured that the 
stream of data received from the GPS were not ‘garbage values’, so this value was printed out on 
the controller screen and it was compared with the stream of data received from the same 
location directly by the GPS software. Once both consistently agreed, indicating the controller 
was processing the data stream correctly, the next step was to make sure that proper GPS 
coordinates were extracted from this data stream. Once extracted from the data stream they were 
compared to the coordinates received from a hand held GPS unit. Once the coordinates correctly 
agreed the next step was to make sure that they were in the correct required format: Degrees and 
Decimals Minutes. Once all of these tests had been successfully performed, the Get Position 
function was declared to be working error free.  

Moving 

The main task of the moving function was to obtain two GPS positions readings at a certain 
interval. Once the controller had these readings the next task was to compute the distance in 
meters between these two GPS positions. If this distance is zero meters, that means the vehicle is 
stationary and not moving. If this distance is more than zero meters that means that the vehicle is 
moving. This function was added to the controller program, as stated above, to provide safety to 
operators and to avoid accidents of any kind while servicing or repairing the vehicle. If the 
function returns a value that signifies that the vehicle is not moving, then the system would not 
alert the driver to raise or lower box. Based on input from the drivers, and personnel at the 
Mn/DOT workshops it was decided that if the vehicle is moving at a speed greater than five (5) 
mph then the chances of someone being under the dump box is zero. The team determined that if 
the vehicle moves more than two (2) meters in 1 second its speed exceeds five (5) mph. The 
programmer had created two temporary variables called: T1 and T2; T1 stores the first GPs 
reading and T2 stores the reading taken after one second. To test, the programmer received a 
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reading into T1 and stored a known GPS position in T2.  The programmer then checked to see if 
the proper distance value was computed, then the routine was tested the other way round by 
replacing T1 instead of T2 with a fixed value. Once the team was satisfied that the controller was 
receiving proper values in T1 and T2, the programmer wanted to check if the function was 
returning a proper value. To do that, the programmer first hard coded the same values in T1 and 
T2, and checked if the function returned a zero. Then the programmer replaced T1 and T2 with 
different known values and checked if the functioned returned a one. Once all these tests were 
performed the programmer was sure there were no bugs in this function.  

Lower Box and Raise Box 

The lower box function is called by the main function if there is an obstacle less than 400 
meters away while it is moving. The lower box function first checks if the box is in the raised 
position, then calls the moving function to check if the vehicle is moving. If both these 
conditions are true then the function should alert the driver by sounding the beeper present on the 
controller. There were only two things that had to be checked in this function. First, was the 
function receiving and storing proper values from the magnetic switch. Second, did the beeper 
work as desired and when required. The input from the magnetic switch was received at port 12 
of the controller and stored in a variable say called ‘X’. So first the programmer checked if 
variable X stored a one when the switch is open and a zero when the switch is closed. Once the 
team was sure that this functionality was flawless, they had to make sure the beeping 
functionality was working properly. The function should beep if the vehicle is moving and the 
box is up. To test this logic the team made a change to this condition, i.e. it should beep if the 
box is up (even with the controller stationary). This test made sure that the beeping functionality 
was working properly.  

The raise box function is called by the main function only after the box is lowered by the 
lower box function. The main task of the raise box function is to alert the driver when it is safe to 
raise the box again. The raise box function basically checks two conditions: if it has passed the 
last bridge (obstacle) by more than 100 meters, and the next bridge (obstacle) on the route is 
more than 400 meters away. If both these conditions are true, then it alerts the driver to raise the 
box. In this function the programmer had to make sure that the function computes the 100 meter 
and 400 meter distance to raise the box correctly. The tests for this function were the same as the 
lower box function; the only difference was that the function had to stop beeping after 25 
seconds, as desired by the plow drivers.  

4.3.3 Stationary Test Runs  

Once all the functions were working individually as expected, the team had to make sure that 
all these functions worked correctly with each other. The basic difficulty in doing that was the 
program is not supposed to work at all if it is not placed on a moving vehicle, because of the 
presence of the safety driven Moving function. Again some changes were necessary to perform 
the stationary test runs. The Moving function must be disabled so that the program could work 
even without moving. It was not very difficult as the program was modular and the moving 
function was separate allowing it to be enabled or disabled very easily. Once the moving 
function was disabled the first stationary test run could be conducted. This test run obviously did 
not provide many results; but, it made sure that all the functions were running well with each 
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other. After a successful stationary test run the team was ready to take it out for an actual test 
run. The following section covers all the testing that was performed on the road in real time 
conditions.  

4.3.4 First test run of the system 

After all the testing mentioned in the previous chapter was done, the team was now ready to 
take the testing to the next level or take their solution live.  These live tests were performed in a 
car instead of a Mn/DOT snowplow, so many conditions had to be emulated by the team. First of 
all the magnetic switches which will be mounted on the snowplow dump box were handled 
manually to emulate raising and lowering of the box. The team decided to use a cigarette lighter 
plug to draw the power supply from the car for the controller. Route “101” from the original test 
data set was used as the test route. The route started at 26th Ave East on to I-35 all the way to 40th 
Ave West on I-35. Obstacles along this route included sign posts, bridges, over-head pedestrian 
crossings and railway bridges. A test was run to analyze if the solution correctly detected all the 
obstacles on the route and alerted the driver in time to lower the box or raise the box. In this test 
run all the functions were tested again but in real time.   

4.3.5 Difficulties  
Once the software went live, many abnormalities started to show up. Table 7 lists all the 

errors and abnormalities observed by the team.  

Table 7: List of Errors and Abnormalities 

I. The software was not able to find all the obstacles on the route. The route was ran a 
couple of times, but the software was still not able to identify all the obstacles on the 
route. 

 

II. The lower box function was working as expected but the raise box function would not 
alert the driver properly. 
 

III. Many times the program would hang while in the raise box function. 
 

IV. After a few test runs the program started identifying fewer and fewer obstacles. 

V. The program would hang after finding a few obstacles and start printing garbage values 
for the distance between the current location and the next bridge. 
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These were some of the difficulties faced right away after the first few test runs. This section 
describes the cause of the difficulties identified by the team. 

The first problem was that the solution was not able to identify all the obstacles on the route. 
To solve this problem, the team counted the total number of obstacles on the route and compared 
them to the number of obstacles on the corresponding route file. There were many more 
obstacles on the route than the ones present in the route file. By analyzing this data the team 
realized that the route file only had bridges built before ca. 1990.  All the bridges constructed 
after this time were missing from the route file as noted above in Chapter Three (3). The route 
also only included the bridge data. The data for pedestrian bridges, railway bridges and signposts 
was missing from the route file. Thus, the team realized that some kind of system was required 
which could be used to store location of all the missing obstacles on the route file.    

The second problem was that the lower box function worked perfectly but the raise box 
function did not work properly.  Consistently, the system would not alert the user to raise the box 
or alerted the user to raise the box while an obstacle was coming up and already in range. The 
team also noticed that when there were a several obstacles close to each other, the system would 
hang while trying to raise the box. The team realized that the raise box function would be trying 
to raise the box even when there is an obstacle less than 400 meters away and at the same time 
the lower box function was trying to lower the box because there was an obstacle less than 400 
meter away. This would make the lower box and raise box functions go into an infinite loop thus 
causing the system to crash.  

The third problem was that the raise box function would try to raise the box even before it 
had crossed the obstacle and sometime not raise the box even after passing the obstacle by more 
than 100 meters. This problem was a relatively straight forward logical error.  The software was 
not saving the current obstacle separately so when the raise box function was looking for bridges 
less than 400 meters away after crossing the bridge it would find the same bridge it just crossed 
as it was not excluded from the search. 

Another problem was that after a few runs the system would became inconsistent i.e. it 
would find certain obstacles in one run, but would not find the same obstacles in the next run. 
The team identified the cause of this problem by printing out the list of obstacles on the screen. 
They noticed that some of the obstacles appeared multiple times on the screen while they 
appeared only once in the original route file. This helped the team to identify the problem. The 
problem was due to poor software engineering. The programmer neglected to clear the buffer in 
which the obstacles were temporarily stored after each load iteration. This lead to multiple 
entries of the same obstacle (early in list) and no room for obstacles from later in the route file. 

While printing the distance of all the obstacles from the current location, sometimes these 
distance values were very large or just “garbage” and sometimes a segmentation fault error 
occurred and the program would terminate. The segmentation fault occurs when a program tries 
to access a memory location that it is not allowed to access or attempts to access an invalid 
memory location. The team realized that several times after the pointer reached the last entry in 
the obstacle list would not roll back to the first entry. Thus it would keep receiving garbage value 
from those locations or run out of bounds. One of the reasons for this error was that the team was 
keeping track of the numbers of obstacles in the route file and used that number as the counter to 
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browse through route file.  The error occurred if the obstacle comparison began from anywhere 
but the beginning of the list. To counter this error the team made a small change in the route file 
format. A prefix X was added to the last entry of our route file to indicate the end of list. So 
whenever an X would be encountered the pointer would be reset to the first location in the route 
file. 

4.3.6 Troubleshooting 

By now the team had identified many errors in the system including both logical and 
programming errors. The team had realized that because of the incomplete obstacle data some 
kind of mechanism was required so that the missing obstacles could be added to the route file. 
The team planned to design another system which would work with the current system to keep it 
up to date. Chapter Three (3) had already discussed the need and design of such a system.  

The team had to change the Raise box function significantly because while designing the 
function the team did not expect to encounter so many obstacles so close to each other. When 
this actually happened the function crashed. There was another change that had to be made to the 
program. The program needed to store a pointer for the obstacle the box was lowered for, and 
exclude that obstacle while doing the calculations to raise the box. 

After all the changes were made, the team had to take the system out on the route again for 
testing.  It was very risky to test the system on the actual route along I 35 which is one of the 
most heavily traveled highways in Northeast Minnesota. So the team decided to create an 
alternate route and simulate actual route-like conditions on this controlled route. The team 
created this route using the trainer program. The trainer system was used to create a route with 
multiple obstacles.  Most live tests were performed on this route, a route that wrapped around 
UMD’s upper campus starting at stadium drive and St. Marie Street. Once confident that the 
system was working properly the team decided to perform a final proof test on the actual route. 
Using the test route created by the trainer program helped the team to debug the program in real 
route like conditions, but it was less risky then testing it out on the actual highway. This made 
troubleshooting easier as, the driver could stop, take an exit or slow down as required to test the 
system which would not be possible on the real highway. Another advantage of using this test 
route was that the team could add or remove obstacles for testing convenience to simulate real 
life conditions. This helped the team in testing and debugging the system extensively. This kind 
of extensive testing might not have been possible by running just a single route, as all these 
simulated conditions might not even arise on that particular route but might arise on some other 
route. 

4.4 Road Testing the IBIAS System on Snowplow Trucks 
Once initial controller testing cycle was complete, as described in the preceding sections,  the 

team installed the IBIAS system on one of the Mn/DOT District 1 snowplows and tested it in the 
actual working conditions. The following sections detail the results of performance testing after 
the team installed the IBIAS system on a snowplow.  When the team took the system to 
Mn/DOT District maintenance headquarters in Duluth to mount it on a plow truck, they found 
that the truck chosen would not be used on “Route 101” but rather a route that covered part of 
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I35 (26th Ave. W to 26th Ave E.) but then continued along Mn 61 (London Road) all the way out 
to 61st Ave E.  This new route would provide all types of the hard obstacles that were discussed 
in the earlier sections and added a large number of low hanging power and TV cable lines 
stringing across London road.  The number of obstacles along the route was about 80, a number 
much higher than with any test route the team had explored.  In addition to the Mn/DOT 
snowplow, St. Louis Country agreed to allow the team to place an IBIAS system on one of their 
maintenance plows that ran a rural route outside of Virginia, Mn.  This plow maintained a mostly 
low speed loop with over 90 obstacles, nearly all low hanging cables as it circled a lake past 
many residence homes.  This route was normally plowed at a lower speed so the team was able 
to relax the obstacle recognition distance to 200 meters (from 400 meters) but even with this 
change, the obstacle list would prove difficult to handle. 

4.4.1 Mounting the System 

Many challenges surfaced once the team actually started to implement the system even after 
the extensive testing program. The team needed to mount the magnetic switches below the dump 
box at the back of the truck’s frame near the pivot point of the single hinge. As the controller was 
originally conceived, one switch would check if the box is in raised position higher than the safe 
height, the other to indicate if it’s down lower than the safe height. While installing the switches 
the team realized that there wasn’t enough room to place two switches near the box pivot 
location. This led to one of the major changes in the system design. The team decided to use only 
one switch instead of two, this change had a beneficial side effect since improved programming 
eliminated the need troublesome second switch which reduced the cost of the system by about 
$75. The remaining switch had to be placed in such a way that the circuit does not break (the 
switch does not open) until the box crosses the safe height threshold. This brought in another 
challenge: determining an exact position to place the switch. The specifications of the switch 
states that the magnets have to be more than one inch apart to break the circuit. The team 
calculated the expected switch location, based on the one inch specification and box height 
angle. But when the switch was actually placed on the truck at the position determined by the 
calculations, the team noticed that it took more than 1.5” of movement for the switch to open. At 
the same time the magnet had to be less than 1” from the switch unit before the switch 
reconnected. There could be many reasons for the switch not working as specified but the one 
affecting our system could most likely be the way magnets move away from each other, and the 
proximity to the mass of steel in the truck frame and box. The team noted a curved motion as the 
path followed by the switch halves mover apart to break the circuit. So the switch had to be 
moved closer to the pivot but the problem here was that an exact position could not be found. To 
counter this problem the team designed an adjusting mechanism on which to mount the switch, 
so that minor positional changes could be made. The team design a fixture pair employing  two 
separate mounting units. One-half of the sensor pair (the magnet) was mounted on the top 
adjustable bracket (which is attached to the dump box) and the other (switch body) was mounted 
on the lower adjustable bracket, attached to the truck frame. Since the active sensor was wired 
directly to the controller this mounting arrangement minimized the potential physical damage to 
the switch wiring as a result of repeated motion. Figure 32 and Figure 33 show models for the 
upper and lower mounting units as designed in CATIA R17.   
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Figure 32: Upper Adjustable Mounting Bracket 

 

Figure 33: Lower Adjustable Mounting Bracket 
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Another problem was to identify an appropriate position to place the controller inside the 
cabin.  During initial testing was an as yet unsolved problem as the cabin was already loaded 
with many other pieces of control equipment. However, relying on the help of Mn/DOT Duluth 
workshop personnel a small metal mounting platform was made and welded near the driver’s 
seat inside the cabin, see Figure 21. After the plow operators drove the plow truck on a few early 
test runs, they felt that the position was poor and requested that it be moved to a position closer 
to the back wall of the truck cab. The original position had been chosen so that the operator 
could easily see the user interface to enter their plow route and read any messages, however, 
since the audio alerts were very loud and the obstacles were considered continuously, the 
operator really had no need to view the screen on the Op7200 controller once they began 
plowing operation.  During phase two (2) testing, currently being conducted, the mounting 
platform has been move to a less conspicuous position at the rear of the cab. 

4.4.2 Testing the system in the Snow Plow 

Once the system was mounted on the truck, the team had to again test the system. Since the 
snowplow truck provided by District 1 was assigned to a specific plow route, and not the one the 
team studied extensively, one team member joined the operator on the actual route for which it 
was to be used. While the driver ran the route, the team member took readings using the TIBIAS 
system to develop the required obstacle map.  After this obstacle map was loaded back to the 
controller, the driver was asked to run the route with the box raised to a level at which they 
would usually operate the plow truck. The IBIAS system was able to identify all the obstacles, 
but on both test routes there were too many obstacles the constant alerting to upcoming obstacles 
proved to be very irritating for the driver. This was a serious issue that had to be handled, 
because if the user of the system was not comfortable he would not use it and that would defeat 
the purpose of developing the system. While the problem is yet unresolved and is the subject of 
on-going testing, the team first decided to increase the safe height for the box by adjusting the 
switch position and in fact designing a new switch mounting device that moves the magnetic 
switches away from the earlier hard mounts in contact with the steel of the box and frame.  This 
new switch mounting system is also part of the on-going test phase.  The team notes that these 
continuing tests are being conducted by the MIE department of UMD at no further cost to 
NATRSL or Mn/DOT at this time.  The department is conducting the further testing as a part of 
their educational mission to Northeast Minnesota. 

The team faced another problem while testing the IBIAS system in Virginia, MN, on the St. 
Louis county snowplow route. The test route in this location had a many obstacles all fairly close 
to each other as noted earlier. This forced the system to beep nearly continuously either to lower 
the box or raise the box. This proved very frustrating for the snowplow operators. The team 
decided to make changes to the system to improve user friendliness and user acceptability. A 
change was made in the raise box function so that it stops beeping after 30 seconds if the driver 
does not raise the box. This change was in addition to the one noted above (reducing the safe 
closing distance to 200 meters).  These changes helped the user feel more comfortable with the 
system, as it was not beeping at them all the time, especially when safe. The team discussed 
making a similar change to the lower box function. However, they decided against it as the lower 
box function was more safety critical as compared to the raise box function.  
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When phase I testing was reviewed after the 2007-08 winter season, the team was not 
satisfied with the system’s performance.  Several issues were uncovered during this testing that 
should make the system more robust with further refinements.  The team was encouraged that the 
use of a GPS system seemed to be satisfactory as a sole mapping technique but the signals were 
very disturbing to the drivers, a solution seems to be the use of a dash mounted warning light: 
“lower Box” with a audio signal that lasts only five (5) to 10 seconds in duration, a task being 
explored in second phase testing.  Because of the apparent problems with the operation of the 
magnetic switch, the team performed a second redesign of its mounting system.  The team felt 
that this problem was the most damaging problem that was observed during phase I testing.  In 
the new design, the switch will be directly pulled apart, following a linear path, rather than by 
rocking apart as was noted with the initial designs.  Additionally, with the new mount, the switch 
and magnet has been mounted in a plastic case on an aluminum base that is offset away from the 
truck’ frame and not connected directly to the steel dump box.  These improvements are 
expected to eliminate the hanging switch, or a switch that once opened after the box has been 
raised would not close (reset) when the box was lowered to a safe height.  
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Chapter 5: Summary and Conclusions 
5.1 Summary of the Project Activities 

A usable snowplow truck mounted collision avoidance controller has been developed and 
testing during snow plow operation along the highways of Mn/DOT District 1.  As the primary 
goal of this project, the team can declare that a successful conclusion to the project has been 
achieved.  The controller that has been designed and constructed, based on the goals set for the 
project, is one that can be an aid to Mn/DOT maintenance staffs statewide.  After phase I testing, 
several nagging concerns with the solution are still evident, and are being address through a 
continuing testing phase by members of the faculty, staff, student body of MIE at UMD. 
However, the team can report that the project has been concluded on a successful note. The team 
began the project by performing a study of applicable means for sensing and mapping a set of 
obstacles that would be required by any on-board controller.  From this study, and the target cost 
communicated by Mn/DOT officials, a controller system for mobile deployment that included an 
OP 7200 hardened programmable controller, a Garmin 15L GPS receiver/controller and a GE 
Guardian 166 magnetic proximity switch sensor was designed.  The prototype system that was 
designed totals about $575 in it prototype design.  The system can be seen in Figure 22 in this 
report.  

During the system design activities, the team developed a tool for creating obstacle files.  In 
the original project proposal, the team had proposed using Mn/DOT’s Br-Info database as the 
source of this list.  A Visual Studio 2005 software application was built to extract bridge 
geometric (locational) information from this database to write an obstacle file that could be 
loaded into the OP 7200 controller for use along the roadways of District 1.  The application 
developed used two additional databases provide by Mn/DOT personnel: a Plow route database 
that included road and milepost information for each snow plow route in the District and a 
database of locational information for most of for the highway mileposts within the District. 
When the application was executed, a total of 104 text files were built to cover the plow routes in 
the District, as specified by the plow routes database.  After later analysis, it was found that the 
set of plow routes was in fact no longer current.  However, the routes that were operated along 
I35 from Pine County through Duluth were correctly correct in position, but they were no longer 
called by the identifying labels as had been provided by District personnel in the database.   

During preliminary testing one of the routes, called “Route 101” by the research team, a 
route that ran along I35 from W. 40th Avenue to E. 26th Avenue in Duluth, the team found that all 
the bridges built after ca. 1990 were not coded in the files created by the Visual Studio 
application. Careful review of the Br-Info database that had been provided confirmed that these 
bridges, which would have been part of the final construction phase to complete I35 were not 
included.  The team suspected that, due to homeland security requirements, current Br-Info 
database data is restricted in its use.  While making the early test runs, the research team noticed 
that other types of obstacles were passed and they were not in the Br-Info database.  These 
included highway signs, pedestrian crosswalks, low hanging power cables and even temporary 
overhead obstacles that may be present due to roadway maintenance activities or construction.  
While they could be struck by the plow dump box if it is raised, they would never be found in the 
Br-Info database environment which is used for other purposes.  The team decided to develop a 
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separate controller application called the “TIBIAS” or trainer application to allow the system 
manager to build route obstacle files that can be easily loaded to a plow truck controller.  This 
application can be executed by a trained operator, in any vehicle, simply by running along a new 
or existing plow route and harvesting all the obstacles, be they permanent or temporary.  After 
minor adjustment to the data, all the locations so harvested can be written to a text file including 
the route label and then recompiled to the appropriate snowplow truck’s controller. 

The controller software that is executed during plow operation was designed to be used in an 
automated manner that would relieve the driver of all box positional control.  While currently 
deployed as a semi-automated version where the driver is alerted to move the box down to a safe 
height as an obstacle approaches, the modular design would be able, with suitable modification 
to operate in the envisioned automatic control mode.  After extensive testing, including the 
construction of a test route near UMD in Duluth, the obstacle detection system or “IBIAS” was 
mounted on a Mn/DOT snowplow and tested during actual plowing activities during Winter 
2007-2008 along a route in Duluth.  The team was also able to mount an IBIAS controller on a 
St. Louis County Maintenance plow during this time frame and the team was able to gather vital 
information that will lead to a much improved IBIAS after further refinements during phase two 
testing being performed by MIE personnel at UMD.  The team notes that these continuing tests 
are being conducted by the MIE department of UMD at no further cost to NATRSL or Mn/DOT 
at this time.  The department is conducting the further testing as a part of their educational 
mission to Northeast Minnesota. 

As with all NATRSL project that have been conducted at UMD, one of the most important 
components is the education impact of transportation based research.  This project was no 
different and touched many students’ educational lives.  The project formed the basis for two 
Master of Science degree theses for the co-author’s of the project final report: Hilal Katmale and 
Rami Verma (Katmale 2007, Verma 2009).  Additionally, one of the MIE programs capstone 
senior design project teams was used to provide design work during 2007 ( Pelzer, et. al. 2007).  
Finally, when it was determined that the magnetic switch mounting system was problematic, Dr. 
Lindeke asked his class in kinematic’s design during spring semester 2008 to analyze and build 
alternatives to the mechanism used to move the sensor units apart, linearly.  Two teams 
suggested designs and one was chosen for phase II testing and is mounted on the plow at this 
time.   

5.2 Observations, Conclusions and Recommendation for On-board 
Collision Warning Systems 

Having completed phase one on-board testing and assessed the results of this project, the 
team can report the following issues observation, results and recommendations: 

 With the proper GPS unit, one capable of internal dead reckoning, a single 
obstacle detection sensor could be used in open areas of District 1 highways.  
While this was a concern at the outset of the project, road testing suggested that a 
single sensor solution method can be implemented successfully.  This was 
refreshing news in light of the costs of additional reliable sensor systems.  When 
the sensors and controller hardware were assembled into a system for use on the 
snowplows, a cost of about $575 (with potentials for lower costs if the system is 
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build in larger quantities) was found.  This cost is very close to the target of about 
$500 for each plow that was suggested by Mn/DOT personnel at the projects 
beginning.   

 The use of modular controller software for the IBIAS controller was 
implemented.  By using this approach the current, semi-automated, system could 
be modified, with small effort, to one that is fully automated to free the driver 
from routine obstacle tracking activities during long and fatiguing plowing shifts.   

 The method used to track obstacles in which had each obstacle in the obstacle list 
is checked each time a new reading was obtained from the GPS unit (at 1 second 
intervals) was problematic on routes with a high number of potential obstacles 
(like the two that formed the test cases during winter 2007-2008).  However, by 
checking obstacles this way, which was computationally intensive, a plow route 
could be entered at any point and from any direction and upcoming obstacles 
could always be detected.  Using this approach, if an operator is assigned to plow 
to bare pavement over their route, they can repeatedly plow from end to end along 
the route or backtrack along the route, after a turnabout, without having to reset 
the control.   

 Additionally, because a plow could be diverted from its regular route to another in 
case of break downs during snow emergencies, all plow routes within a district 
are loaded into the IBIAS controller as a default case.  Then, if the driver is asked 
to move to a different route, all they need do is enter a function key on the 
controller, after finishing their current route and entering the identification for the 
new route to which they have been assigned. 

 Because of issues with the Br-Info databases supplied, and the presence of 
obstacles along the plow routes that would never be listed in this Mn/DOT 
database, the team developed a companion application called the Trainer or 
TIBIAS.  This application, which would be loaded on a similar OP 7200 based 
controller like those used for the IBIAS system, when coupled to a laptop 
computer can be used, and in fact was used, to create obstacle locational files that 
can be used to maintain the currency of the information for any and all plow 
routes.  

 Significant educational activities have been conducted by this project at the 
undergraduate as well as graduate level including undergraduate course projects, a 
senior undergraduate capstone design project and two Master of Science degree 
projects. 
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Main Application: 

Public Class Form1 
    Dim Br_Con As New OleDb.OleDbConnection() 
    Dim daMilepost As OleDb.OleDbDataAdapter 
    Dim dtMilepost As New DataTable 
    Dim cbMilePost As OleDb.OleDbCommandBuilder 
    Dim strRoute As String 
    Dim da_GetBridges As OleDb.OleDbDataAdapter 
    Dim cb_GetBridges As OleDb.OleDbCommandBuilder 
    Dim dt_GetBridges As New DataTable 
    Dim objFile As System.IO.StreamWriter 
    Dim BrFile_R As System.IO.StreamWriter 
    Dim daRoutes As OleDb.OleDbDataAdapter 
    Dim cbRoutes As OleDb.OleDbCommandBuilder 
    Dim dtRoutes As New DataTable 
 
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click 
Dim str_ConString As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Documents and 
Settings\Administrator\My Documents\Transportation Research\Bridge.mdb" 
        Dim I, II, W, B, Q, BD, RCount, Long1, Long2, Lat1, Lat2, RC, loc_in_Array As Integer 
        Dim LongLat(,) As String 
        strRoute = "'" & txtNo_Rts.Text & "'" 
Dim StrippedLong, StLong2, stStartMP, stEndMP, Fst_MP_Long, Fst_MP_Lat, Lst_MP_Long, Lst_MP_Lat As 
String 
        Dim StrippedLat, StLat2, Z As String 
Dim ROUTE_CNT, L_Long, S_Lon, L_Lat, S_La, Tom, Mary, TomTen, Maryten, TomSgn, MarySgn As Integer 
        Dim Long_To_DMS, Lat_To_DMS, Tr_DMIN_LONG, Tr_DMIN_Lat As Integer 
        Dim Start_MP, End_MP As Single 
        Dim StLatSec, StLatDecMin, StLongSec, StLongDecMin As String 
        Dim StLatDegMin, StLongDegMin As String 
Dim DecLatMin, DecLongMin As Decimal 
        ROUTE_CNT = CInt(txtNo_Rts.Text) + 1 
Dim Fst_MP_Long_DM, Fst_MP_Long_DMin, Fst_MP_Lat_DM, Fst_MP_Lat_DMin As String 
Dim Lst_MP_Long_DM, Lst_MP_Long_DMin, Lst_MP_Lat_DM, Lst_MP_Lat_DMin As String 
Dim QueryString1 As String = "select ID, ROADWAY_NA, FROM_TRUE_, TO_TRUE_MI FROM PlowRoute 
Where OBJECTID > 0 AND OBJECTID <" & ROUTE_CNT 
Dim dFst_MP_Long_DMin, dLst_MP_Long_DMin, dFst_MP_Lat_DMin, dLst_MP_Lat_DMin As Decimal 
Dim iFst_MP_Long_DMin, iLst_MP_Long_DMin, iFst_MP_Lat_DMin, iLst_MP_Lat_DMin As Integer 
        Using Br_Con As New OleDb.OleDbConnection() 
            Br_Con.ConnectionString() = str_ConString 
            Br_Con.Open() 
            daRoutes = New OleDb.OleDbDataAdapter(QueryString1, Br_Con) 
            cbRoutes = New OleDb.OleDbCommandBuilder(daRoutes) 
            daRoutes.Fill(dtRoutes) 
 
            For RC = 0 To dtRoutes.Rows.Count - 1 
              Start_MP = dtRoutes.Rows(RC)("From_TRUE_") 
              End_MP = dtRoutes.Rows(RC)("TO_TRUE_MI") 
              strRoute = "'" & dtRoutes.Rows(RC)("ROADWAY_NA").ToString & "'" 
                'add it here 
              txtMPostNum.Text = strRoute 
 
Dim QueryString2 As String = "Select XUnits, YUnits From MilePosts Where ROUTE =" & strRoute & "and TM 
>=" & Start_MP & "and TM <=" & End_MP 
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                daMilepost = New OleDb.OleDbDataAdapter(QueryString2, Br_Con) 
                cbMilePost = New OleDb.OleDbCommandBuilder(daMilepost) 
                daMilepost.Fill(dtMilepost) 
                txtRecordCnt.Text = dtMilepost.Rows.Count - 1 
                If dtMilepost.Rows.Count > 0 Then 
                    ReDim LongLat((dtMilepost.Rows.Count - 1) * 10, 1) 
                End If 
    'Dim objFile As New System.IO.StreamWriter("c:/test1.txt", True) 
                Z = CStr(0) 
                loc_in_Array = 0 
                For I = 0 To dtMilepost.Rows.Count - 2 
 
StrippedLong =   Microsoft.VisualBasic.Left(dtMilepost.Rows(I)("XUnits").ToString, 6) 
StLong2 = Microsoft.VisualBasic.Left(dtMilepost.Rows(I + 1)("XUnits").ToString, 6) 
StrippedLat = Microsoft.VisualBasic.Left(dtMilepost.Rows(I)("YUnits").ToString, 6) 
StLat2 = Microsoft.VisualBasic.Left(dtMilepost.Rows(I + 1)("YUnits").ToString, 6) 
                    Long1 = CInt(StrippedLong) 
                    Long2 = CInt(StLong2) 
                    Lat1 = CInt(StrippedLat) 
                    Lat2 = CInt(StLat2) 
                    If I = 0 Then 
                        Fst_MP_Long = DectoDMS(Long1) 
                        Fst_MP_Lat = DectoDMS(Lat1) 
          Fst_MP_Long_DM = Microsoft.VisualBasic.Mid(Fst_MP_Long, 2, 4) 
          Fst_MP_Long_DMin = (Microsoft.VisualBasic.Mid(Fst_MP_Long, 6, 2)) 
                        dFst_MP_Long_DMin = CDec(Fst_MP_Long_DMin) 
                        dFst_MP_Long_DMin = dFst_MP_Long_DMin * 100 / 60 
                        iFst_MP_Long_DMin = CInt(dFst_MP_Long_DMin) 
                        If iFst_MP_Long_DMin < 10 Then 
                            Fst_MP_Long_DMin = Z & CStr(iFst_MP_Long_DMin) 
                        Else : Fst_MP_Long_DMin = CStr(iFst_MP_Long_DMin) 
                        End If 
                        Fst_MP_Long = Fst_MP_Long_DM & Fst_MP_Long_DMin 
 
          Fst_MP_Lat_DM = Microsoft.VisualBasic.Mid(Fst_MP_Lat, 2, 4) 
          Fst_MP_Lat_DMin = (Microsoft.VisualBasic.Mid(Fst_MP_Lat, 6, 2)) 
                        dFst_MP_Lat_DMin = CDec(Fst_MP_Lat_DMin) 
                        dFst_MP_Lat_DMin = dFst_MP_Lat_DMin * 100 / 60 
                        iFst_MP_Lat_DMin = CInt(dFst_MP_Lat_DMin) 
                        If iFst_MP_Lat_DMin < 10 Then 
                            Fst_MP_Lat_DMin = Z & CStr(iFst_MP_Lat_DMin) 
                        Else : Fst_MP_Lat_DMin = CStr(iFst_MP_Lat_DMin) 
                        End If 
                        Fst_MP_Lat = Fst_MP_Lat_DM & Fst_MP_Lat_DMin 
                    End If 
                    If I = dtMilepost.Rows.Count - 2 Then 
                        Lst_MP_Long = DectoDMS(Long2) 
                        Lst_MP_Lat = DectoDMS(Lat2) 
        Lst_MP_Long_DM = Microsoft.VisualBasic.Mid(Lst_MP_Long, 2, 4) 
        Lst_MP_Long_DMin = (Microsoft.VisualBasic.Mid(Lst_MP_Long, 6, 2)) 
                        dLst_MP_Long_DMin = CDec(Lst_MP_Long_DMin) 
                        dLst_MP_Long_DMin = dLst_MP_Long_DMin * 100 / 60 
                        iLst_MP_Long_DMin = CInt(dLst_MP_Long_DMin) 
                        If iLst_MP_Long_DMin < 10 Then 
                            Lst_MP_Long_DMin = Z & CStr(iLst_MP_Long_DMin) 
                        Else : Lst_MP_Long_DMin = CStr(iLst_MP_Long_DMin) 
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                        End If 
                 Lst_MP_Long = Lst_MP_Long_DM & Lst_MP_Long_DMin 
 
       Lst_MP_Lat_DM = Microsoft.VisualBasic.Mid(Lst_MP_Lat, 2, 4) 
       Lst_MP_Lat_DMin = Microsoft.VisualBasic.Mid(Lst_MP_Lat, 6, 2) 
                        dLst_MP_Lat_DMin = CDec(Lst_MP_Lat_DMin) 
                        dLst_MP_Lat_DMin = dLst_MP_Lat_DMin * 100 / 60 
                        iLst_MP_Lat_DMin = CInt(dLst_MP_Lat_DMin) 
                        If iLst_MP_Lat_DMin < 10 Then 
                            Lst_MP_Lat_DMin = Z & CStr(iLst_MP_Lat_DMin) 
                        Else : Lst_MP_Lat_DMin = CStr(iLst_MP_Lat_DMin) 
                        End If 
                        Lst_MP_Lat = Lst_MP_Lat_DM & Lst_MP_Lat_DMin 
                    End If 
                    If Long1 > Long2 Then 
                        L_Long = Long1 
                        S_Lon = Long2 
                        TomSgn = -1 
                    ElseIf Long1 = Long2 Then 
                        L_Long = Long1 
                        S_Lon = Long2 
                        TomSgn = 0 
                    Else 
                        L_Long = Long2 
                        S_Lon = Long1 
                        TomSgn = 1 
                    End If 
                    If Lat1 > Lat2 Then 
                        L_Lat = Lat1 
                        S_La = Lat2 
                        MarySgn = -1 
                    ElseIf Lat1 = Lat2 Then 
                        L_Lat = Lat1 
                        S_La = Lat2 
                        MarySgn = 0 
                    Else 
                        L_Lat = Lat2 
                        S_La = Lat1 
                        MarySgn = 1 
                    End If 
                    Tom = L_Long - S_Lon 
                    TomTen = Tom \ 10 
                    Mary = L_Lat - S_La 
                    Maryten = Mary \ 10 
                    For II = 0 To 9 
                        Long_To_DMS = Long1 + TomTen * II * TomSgn 
                        Lat_To_DMS = Lat1 + Maryten * II * MarySgn 
 
                        LongLat(loc_in_Array, 0) = DectoDMS(Long_To_DMS) 
                        LongLat(loc_in_Array, 1) = DectoDMS(Lat_To_DMS) 
 
                        'objFile.Write(LongLat(loc_in_Array, 0)) 
                        'objFile.WriteLine(LongLat(loc_in_Array, 1)) 
                        loc_in_Array = loc_in_Array + 1 
                    Next 
                    'Me.Refresh() 
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                    'For W = 1 To 1000000 
                    'Next 
                    'txtLong.Text = "" 
                    'txtLat.Text = "" 
                    'Me.Refresh() 
                Next 
                'objFile.Close() 
                'objFile.Dispose() 
Dim Tab_Name, Br_ID, Br_Long, Br_Lat, Br_Vert, Br_DeWidth, Br_NoSpans As String 
Dim P, RecordCount, Cur_Bridge_Ct, Sum_Br_Count, long_zone, lat_zone As Integer 
 
'If (MessageBox.Show("Would You Like To Create at SnowPlow Route Table", "Table Name", 
MessageBoxButtons.YesNo, MessageBoxIcon.Question, MessageBoxDefaultButton.Button1) = 
Windows.Forms.DialogResult.Yes) Then 
                'Tab_Name = InputBox("Enter A SnowPlow Route Name") 
                'If Tab_Name = "" Then 
                'MsgBox("You Entered Nothing") 
                'Else 
                'MsgBox("You Entered " & Tab_Name) 
                'End If 
 
 Tab_Name = "c:\Dist_1\Route_No" & dtRoutes.Rows(RC)("ID").ToString & ".txt" 
                'MsgBox("File Name is " & Tab_Name) 
 
                Dim Q_String, B_Long, S_Long, B_Lat, S_Lat, SRcount As String 
                Dim Br_Record(,) As String 
                RecordCount = CInt(txtRecordCnt.Text) 
     'Dim myTrans As OleDb.OleDbTransaction = Br_Con.BeginTransaction() 
 
                RCount = 0 
                ReDim Br_Record(100, 5) 
                For Q = 0 To ((RecordCount * 10) - 2) 
 
                    If LongLat(Q, 0) >= LongLat(Q + 1, 0) Then 
                        B_Long = LongLat(Q, 0) 
                        S_Long = LongLat(Q + 1, 0) 
                        long_zone = 100 
                    Else 
                        B_Long = LongLat(Q + 1, 0) 
                        S_Long = LongLat(Q, 0) 
                        long_zone = 10 
                    End If 
                    If LongLat(Q, 1) >= LongLat(Q + 1, 1) Then 
                        B_Lat = LongLat(Q, 1) 
                        S_Lat = LongLat(Q + 1, 1) 
                        lat_zone = 100 
                    Else 
                        B_Lat = LongLat(Q + 1, 1) 
                        S_Lat = LongLat(Q, 1) 
                        lat_zone = 10 
                    End If 
                    Q_String = "Select BR_NUM,NO_SPANS,DECK_WIDTH,LATITUDE,LONGITUDE,VERT_1 from 
Bridge where LONGITUDE>=" & S_Long & " and LONGITUDE<=" & B_Long & "and LATITUDE>=" & S_Lat 
& "and LATITUDE<=" & B_Lat & "and VERT_1>' '" 
             da_GetBridges = New OleDb.OleDbDataAdapter(Q_String, Br_Con) 
             cb_GetBridges = New OleDb.OleDbCommandBuilder(da_GetBridges) 
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  'da_GetBridges.UpdateCommand = New OleDb.OleDbCommand("Update Tab_Name") 
 
                    da_GetBridges.Fill(dt_GetBridges) 
                    CURBridge_TxtBx.Text = dt_GetBridges.Rows.Count 
                    Cur_Bridge_Ct = CInt(dt_GetBridges.Rows.Count) 
                    Sum_Br_Count = Sum_Br_Count + Cur_Bridge_Ct 
                    Tot_Bridge_Ct.Text = Sum_Br_Count 
                    Me.Refresh() 
                    'For W = 1 To 1000000 
 
                    'Next 
 
                    If dt_GetBridges.Rows.Count > 0 Then 
                        For BD = 0 To (dt_GetBridges.Rows.Count - 1) 
                            RCount = RCount + 1 
 Br_Record(RCount, 0) = dt_GetBridges.Rows(BD)("BR_NUM").ToString 
'Br_Record(RCount, 1) = dt_GetBridges.Rows(BD)("NO_SPANS").ToString 
'Br_Record(RCount, 2) = dt_GetBridges.Rows(BD)("DECK_WIDTH").ToString 
 Br_Record(RCount, 3) = dt_GetBridges.Rows(BD)("LATITUDE").ToString 
 Br_Record(RCount, 4) = dt_GetBridges.Rows(BD)("LONGITUDE").ToString 
'Br_Record(RCount, 5) = dt_GetBridges.Rows(BD)("VERT_1").ToString 
 SRcount = CStr(RCount) 
     'MsgBox("Current Number of Bridges Found is " & SRcount) 
 StLatDegMin = Microsoft.VisualBasic.Left(Br_Record(RCount, 3), 4) 
 StLongDegMin = Microsoft.VisualBasic.Left(Br_Record(RCount, 4), 4) 
 StLatSec = Microsoft.VisualBasic.Right(Br_Record(RCount, 3), 2) 
 StLongSec = Microsoft.VisualBasic.Right(Br_Record(RCount, 4), 2) 
                            DecLatMin = CDec(StLatSec) 
                            DecLongMin = CDec(StLongSec) 
 
 
                            DecLatMin = (DecLatMin * 100) / 60 
                            DecLongMin = (DecLongMin * 100) / 60 
                            Tr_DMIN_LONG = Math.Truncate(DecLongMin) 
                            Tr_DMIN_Lat = Math.Truncate(DecLatMin) 
                            If Tr_DMIN_LONG < 10 Then 
                                StLongDecMin = Z & CStr(Tr_DMIN_LONG) 
                            Else : StLongDecMin = CStr(Tr_DMIN_LONG) 
                            End If 
                            If Tr_DMIN_Lat < 10 Then 
                                StLatDecMin = Z & CStr(Tr_DMIN_Lat) 
                            Else : StLatDecMin = CStr(Tr_DMIN_Lat) 
                            End If 
                            'StLongDecMin = CStr(Tr_DMIN_LONG) 
                            Br_Record(RCount, 3) = StLatDegMin & StLatDecMin 
                           Br_Record(RCount, 4) = StLongDegMin & StLongDecMin 
 
                        Next 
 
                    End If 
                    dt_GetBridges.Clear() 
                    da_GetBridges.Dispose() 
                    cb_GetBridges.Dispose() 
 
                Next 



 

A-7 

                'Br_ID, Br_Long, Br_Lat, Br_Vert, Br_DeWidth, Br_NoSpans 
                Dim BrFile_R As New System.IO.StreamWriter(Tab_Name, True) 
                BrFile_R.Write(Fst_MP_Lat) 
                BrFile_R.Write(Fst_MP_Long) 
                For B = 1 To RCount 
                    Br_ID = Br_Record(B, 0) 
                    'Br_NoSpans = Br_Record(B, 1) 
                    'Br_DeWidth = Br_Record(B, 2) 
                    Br_Long = Br_Record(B, 3) 
                    Br_Lat = Br_Record(B, 4) 
                    'Br_Vert = Br_Record(B, 5) 
                    BrFile_R.Write("B") 
                    'BrFile_R.Write(Br_ID) 
                    'BrFile_R.Write("LL") 
                    'BrFile_R.WriteLine(Br_NoSpans) 
                    'BrFile_R.WriteLine(Br_DeWidth) 
 
                    BrFile_R.Write(Br_Long) 
                    BrFile_R.Write(Br_Lat) 
                    'BrFile_R.WriteLine(Br_Vert) 
                    'BrFile_R.WriteLine(" ") 
                Next 
                BrFile_R.Write("X") 
                BrFile_R.Write(Lst_MP_Lat) 
                BrFile_R.WriteLine(Lst_MP_Long) 
                BrFile_R.Close() 
                BrFile_R.Dispose() 
                'End Using ' Data File 
 
                'End If 
 
 
                dtMilepost.Clear() 
 
                daMilepost.Dispose() 
                cbMilePost.Dispose() 
            Next        ' This is end of Plow_Routes For (RC) -- Next Set 
        End Using ' Database Connection 
        Br_Con.Close() 
        Br_Con.Dispose() 
MsgBox("District Routes Completed -- Enter New District Route Count to Continue") 
    End Sub 
 
Private Sub btnQuit_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 
btnQuit.Click 
        Me.Close() 
    End Sub 

Conversion Module: 

Module Decimal_to_DMS 
    Public Function DectoDMS(ByVal stDecDegIn As Integer) As String 
        Dim Dec_Deg, Fract_Deg, Fract_Min, Min, Sec As Decimal 
        Dim Degree As Int32 
        Dim Minset, secset, D_Deg_Trunc, Min_Trunc, Sec_Trunc As Integer 
        Dim stDecDegTrunc, stMinTrunc, stSecTrunc, StDMS, zero As String 



 

A-8 

        'This Module Converts Longitude or Latitude for Decimal Degrees to  
        'Degree:Minute:Second format 
        Minset = 0 
        secset = 0 
        zero = CStr(Minset) 
        Degree = CInt(stDecDegIn) 
        Dec_Deg = Degree / 10000 
        D_Deg_Trunc = Math.Truncate(Dec_Deg) 
        Fract_Deg = Dec_Deg - D_Deg_Trunc 
        Min = Fract_Deg * 60.0 
        Min_Trunc = Math.Truncate(Min) 
        If Min_Trunc < 10 Then 
            stMinTrunc = zero & CStr(Min_Trunc) 
        Else : stMinTrunc = CStr(Min_Trunc) 
        End If 
        Fract_Min = Min - Min_Trunc 
        Sec = Fract_Min * 60 ' 
        Sec_Trunc = Math.Truncate(Sec) 
        If Sec_Trunc < 10 Then 
            stSecTrunc = zero & CStr(Sec_Trunc) 
        Else : stSecTrunc = CStr(Sec_Trunc) 
        End If 
        stDecDegTrunc = CStr(D_Deg_Trunc) 
 
StDMS = "'" & Microsoft.VisualBasic.Left(stDecDegTrunc, 2) & Microsoft.VisualBasic.Left(stMinTrunc, 2) & 
Microsoft.VisualBasic.Left(stSecTrunc, 2) & "'" 
        Return (StDMS) 
    End Function 

End Module 



 

 

Appendix B: Dynamic C Listing of the IBIAS Software that is 
Employed in the On-Board Impact Avoidance Controller 
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Code “StLouis21Nov.c” 

#class auto 

#use "gps.lib" 

#memmap xmem 

#define DIGOUTCONFIG 0x02 

#use "gltouchscreen.lib"    // 

#use "tsCustKeyboard.lib" // custom keyset 

#use "Terminal12.lib"  // Good size font for the text entry box 

#use "Terminal9.lib" 

#define MAX_SENTENCE 100 

#define CINBUFSIZE 127 

#define COUTBUFSIZE 127 

#ximport "samples\xmem\SL_Route_1.txt" t01 

#define lDist 0.4 

#define rDist 0.2 

char buffer[1024], fin[1024]; 

int final[1024]; //, mov; 

unsigned  long userX; 

unsigned  long userY; 

unsigned  long vkbX; 

GPSPosition current_pos, tempvar, ar[2]; 

//////////////////////////////////////////////////////////////////////////////// 

long relate(int ip) 

{ 

 fontInfo fi14x16,fi10x12,fi; 

   glXFontInit(&fi, 17, 35, 32, 127, Font17x35); 

    switch(ip) 
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   { 

        case 1 : 

         printf("\n in the case\n"); 

         return t01; 

         break; 

   } 

} 

//////////////////////////////////////////////////////////////////////////////// 

void msDelay(unsigned int delay) 

{ 

 auto unsigned long done_time; 

 done_time = MS_TIMER + delay; 

   while( (long) (MS_TIMER - done_time) < 0 ); 

} 

/////////////////////////////////////////////////////////////////////////////// 

GPSPosition moving(void) 

{ 

 char sentence[MAX_SENTENCE]; 

 int input_char, count; 

 int string_pos; 

 char dir_string[2]; 

    float distance; 

 //calculate distance from known coordinates 

 GPSPosition arr; 

 serCopen(4800); 

 string_pos = 0; 

 dir_string[1] = 0; 

 count =0; 
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 //receive and parse GPS data 

while(1) 

//for(count = 0; count< 2; count++) 

 { 

  input_char = serCgetc(); 

      if(input_char == '\r' || input_char == '\n') 

  { 

   sentence[string_pos] = 0; //add null 

   if(gps_get_position(&current_pos, sentence) == 0) 

   { 

    dir_string[0] = current_pos.lat_direction; 

   //   printf("Latitude%d: %d %f' %s\n",count, 

   //    current_pos.lat_degrees, current_pos.lat_minutes, 

   //    dir_string); 

    dir_string[0] = current_pos.lon_direction; 

   //   printf("Longitude%d: %d %f' %s\n",count, 

   //    current_pos.lon_degrees, current_pos.lon_minutes, 

   //    dir_string); 

               arr.lat_degrees = current_pos.lat_degrees; 

               arr.lat_minutes = current_pos.lat_minutes; 

               arr.lon_degrees = current_pos.lon_degrees; 

               arr.lon_minutes = current_pos.lon_minutes; 

            //if(count==0) 

             //msDelay(1000); 

             count++; 

   } 

     string_pos = 0; 

  } 
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  else if(input_char > 0) 

  { 

   sentence[string_pos] = input_char; 

   string_pos++; 

   if(string_pos == MAX_SENTENCE) 

    string_pos = 0; //reset string if too large 

  } 

      //printf("count = %d", count); 

      if(count == 1) 

       break; 

      //msDelay(3000); 

   } 

 return(arr); 

} 

//////////////////////////////////////////////////////////////////////////////// 

int changeInDist() 

{ 

 float dist; 

   int retn; 

   retn =0; 

 ar[0] = moving(); 

   msDelay(1000); 

 /* 

   printf("\n ar[0] lat deg = %d\n", ar[0].lat_degrees); 

   printf("\n ar[0] lat min = %f\n", ar[0].lat_minutes); 

   printf("\n ar[0] lon deg = %d\n", ar[0].lon_degrees); 

   printf("\n ar[0] lon min = %f\n", ar[0].lon_minutes); 

 */ 
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   ar[1] = moving(); 

 /* 

   printf("\n ar[1] lat deg = %d\n", ar[1].lat_degrees); 

 

   printf("\n ar[1] lat min = %f\n", ar[1].lat_minutes); 

   printf("\n ar[1] lon deg = %d\n", ar[1].lon_degrees); 

   printf("\n ar[1] lon min = %f\n", ar[1].lon_minutes); 

  */ 

   dist = gps_ground_distance(&ar[0],&ar[1]); 

   //printf("\n\ndistance = %f\n\n", dist); 

   if(fabs(dist) > 0.002) 

          retn = 1; 

  /// cHANGES MADE FOR STATIONARY RUN. PLEASE CHANGE THIS B4 ACTUAL RUN - RAVI 9/19/07 

     //printf("\nretn = %d", retn); 

   retn = 1; 

   return(retn); 

} 

//////////////////////////////////////////////////////////////////////////////// 

void lowerbox(void) 

{ 

  int i, delay,j, mov; 

  fontInfo fi14x16,fi10x12,fi; 

  brdInit(); 

  digOutConfig(DIGOUTCONFIG); 

  //printf("In side lowerbox 1"); 

 //glInit(); 

// Turn on the Backlight, setup the contrast. 

 glBackLight(1); 
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 // Set the Contrast 

 glSetContrast(255); 

 // Initialize the fonts 

   glXFontInit ( &fi14x16,14,16,0x20,0x7E,Terminal12 ); 

   glXFontInit ( &fi10x12,10,12,0x20,0x7E,Terminal9 ); 

   glXFontInit(&fi, 17, 35, 32, 127, Font17x35); 

   glBlock(50,15,225,100); 

   //mov = 1; 

  mov = changeInDist(); 

   //printf("value of mov = %d", mov); 

   if(mov == 1) 

   { 

   do 

   { 

      digOut(1,0); 

      costate 

    { 

       // printf("In lowerbox costate"); 

        glSetBrushType(PIXXOR); 

         glPrintf(100,25,&fi,"Lowering"); 

         glPrintf(135,65,&fi,"Box"); 

         waitfor (DelayMs(500)); 

         for(i=0; i < 3; i++) 

         { 

            for(delay = 0; delay < 8000; delay++); 

             buzzer(1); 

    for(delay = 0; delay < 10000; delay++); 

            buzzer(0); 
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         //msDelay(100); 

     } 

  } 

   j = digIn(12); 

   //printf("input 12 = %d", j); 

   }while(digIn(12)==1); 

   }digOut(1,1); 

} 

//////////////////////////////////////////////////////////////////////////////// 

void raisebox(void) 

{ 

   int i, delay, mov, x, co; 

   fontInfo fi14x16,fi10x12,fi; 

   brdInit(); 

   digOutConfig(DIGOUTCONFIG); 

 // Turn on the Backlight, setup the contrast. 

 glBackLight(1); 

 // Set the Contrast 

 glSetContrast(255); 

 // Initialize the fonts 

 glXFontInit ( &fi14x16,14,16,0x20,0x7E,Terminal12 ); 

 glXFontInit ( &fi10x12,10,12,0x20,0x7E,Terminal9 ); 

   glXFontInit(&fi, 17, 35, 32, 127, Font17x35); 

   glBlock(50,15,225,100); 

   //mov = 1; 

   mov = changeInDist(); 

   //printf("in raise"); 

   if (mov == 1) 
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   { 

   x = 1; 

   co = 0; 

   do 

   { 

    digOut(2,0); 

      costate 

    { 

        glSetBrushType(PIXXOR); 

         glPrintf(100,25,&fi,"Raising"); 

         glPrintf(135,65,&fi,"Box"); 

         waitfor (DelayMs(500)); 

         printf("\n in rasiebox function"); 

         for(i=0; i < 3; i++) 

         { 

 for(delay = 0; delay < 2000; delay++); 

 buzzer(1); 

 for(delay = 0; delay < 3000; delay++); 

 buzzer(0); 

         //msDelay(100); 

     } 

         if(digIn == 1 || co >5) 

         { 

           x = 0; 

         } 

      co++; 

      printf("\n count = %d", co); 

  } 
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   }while(x); 

  } digOut(2,1); 

} 

//////////////////////////////////////////////////////////////////////////////// 

int getGPS() 

{ 

char sentence[MAX_SENTENCE]; 

 int input_char, count, retn; 

 int string_pos; 

 char dir_string[2]; 

    float distance; 

    serCopen(4800); 

    string_pos = 0; 

 dir_string[1] = 0; 

    retn =0; 

 //receive and parse GPS data 

 input_char = serCgetc(); 

       //printf("input = %d",input_char); 

       if(input_char == '\r' || input_char == '\n') 

  { 

   sentence[string_pos] = 0; //add null 

    // printf("%s\n", sentence); 

   if(gps_get_position(&current_pos, sentence) == 0) 

   { 

          dir_string[0] = current_pos.lat_direction; 

  printf("Latitude: %d %f' %s\n",current_pos.lat_degrees, current_pos.lat_minutes,dir_string); 

  dir_string[0] = current_pos.lon_direction; 

  // printf("Longitude: %d %f' %s\n", 
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   // current_pos.lon_degrees, current_pos.lon_minutes, 

   // dir_string); 

          retn =0; 

          return (retn); 

  } 

string_pos = 0; 

  } 

    else 

       retn = 1; 

 return(retn); 

} 

//////////////////////////////////////////////////////////////////////////////// 

GPSPosition getposition() 

{ 

 char sentence[MAX_SENTENCE]; 

 int input_char, count; 

 int string_pos; 

 char dir_string[2]; 

   float distance; 

   serCopen(4800); 

   string_pos = 0; 

 dir_string[1] = 0; 

 //receive and parse GPS data 

 while(1) 

 { 

  input_char = serCgetc(); 

      //printf("input = %d",input_char); 

      if(input_char == '\r' || input_char == '\n') 
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  { 

   sentence[string_pos] = 0; //add null 

    // printf("%s\n", sentence); 

   if(gps_get_position(&current_pos, sentence) == 0) 

   { 

          dir_string[0] = current_pos.lat_direction; 

    //printf("Latitude: %d %f' %s\n", 

   // current_pos.lat_degrees, current_pos.lat_minutes, 

   // dir_string); 

   dir_string[0] = current_pos.lon_direction; 

    // printf("Longitude: %d %f' %s\n", 

     // current_pos.lon_degrees, current_pos.lon_minutes, 

    // dir_string); 

          return (current_pos); 

   } 

   string_pos = 0; 

  } 

  else if(input_char > 0) 

  { 

   sentence[string_pos] = input_char; 

   string_pos++; 

   if(string_pos == MAX_SENTENCE) 

    string_pos = 0; //reset string if too large 

  } 

   } 

} 
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//////////////////////////////////////////////////////////////////////////////// 

GPSPosition extract(int off) 

{ 

   char array[12]; 

   int i, cnt; 

   cnt = 1; 

   for(i = 0; i<12; i++) 

   { 

    array[i] = buffer[off+cnt]-'0'; 

    cnt++; 

   } 

    tempvar.lat_degrees = array[0]*10 + array[1]; 

    tempvar.lat_minutes = (array[2]*10 + array[3]) + (array[4]*10 + array[5])*0.01; 

 tempvar.lon_degrees = array[6]*10 + array[7]; 

    tempvar.lon_minutes = array[8]*10 + array[9] + (array[10]*10 + array[11])*0.01; 

 tempvar.lat_direction = 'N'; 

    tempvar.lon_direction = 'W'; 

    return(tempvar); 

} 

//////////////////////////////////////////////////////////////////////////////// 

void kprin(GPSPosition loc) 

{ 

int lat, lon,lat1, lon1; 

    float flat, flon; 

    lat = loc.lat_degrees; 

    lon = loc.lon_degrees; 

    flat = loc.lat_minutes; 

    flon = loc.lon_minutes; 
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    flat = flat *100; 

    flon = flon*100; 

    lat1 = (int)flat; 

    lon1 = (int)flon; 

   if(lat < 10) 

    printf("0%d",lat); 

   else 

    printf("%d", lat); 

   if(lat1 <1000) 

       printf("0%d",lat1); 

   else 

    printf("%d", lat1); 

   if(lon < 10) 

    printf("0%d", lon); 

   else 

    printf("%d", lon); 

   if(lon1 <1000) 

    printf("0%d",lon1); 

   else 

    printf("%d", lon1); 

} 

//////////////////////////////////////////////////////////////////////////////// 

void main() 

{ 

// Setup some variables for extracting data out of the keyboard. 

   GPSPosition last,start, currLoc, currLoc1,nextBrg, newBrg, currBrg, cbr; 

   GPSPosition rc1; 

   int btn,iVal,x, nextPrn; 
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   int counter, endLoc, endLat, endLon; 

   int final, length; 

   int offse, loop, inLoop, outLoop; 

   //int mov; 

   int manualFlag, raiseFlag, noff, i; 

   int gpsret,delay; 

   long fptr; 

 float fVal; 

   float distance, distance1,newDist, dist, nd, y; 

   int offPass, ofx, ignore; 

   /////////////new dist calc var//////////// 

   float latDiff, lonDiff; 

 char sVal[100],pVal[100]; 

   unsigned wKey; 

   int keyflag, keypad_active, done, tmp, alen; 

   int newD; 

   //char buffer[512]; 

 fontInfo fi14x16,fi10x12,fi; 

   brdInit(); 

   glInit(); 

   keyInit(); 

   keypadDef(); 

  // Turn on the Backlight, setup the contrast. 

glBackLight(1); 

 // Set the Contrast 

glSetContrast(255); 

 // Initialize the fonts 

glXFontInit ( &fi14x16,14,16,0x20,0x7E,Terminal12 ); 
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glXFontInit ( &fi10x12,10,12,0x20,0x7E,Terminal9 ); 

 // Initialize the gltouchscreen.lib library 

userX = btnInit( (int)100 ); 

 //  Initialize the Virtual keyboard keyset. 

vkbX = tscVKBInit( (int)62, &fi14x16,&fi10x12); 

manualFlag = 0; 

offse = 12; 

//mov = moving(); 

loop =1; 

 currLoc.lat_degrees = 0; 

   //gpsret = 0; 

 //  Set the Button Attributes (since the function is non-blocking, 

 //  it will need to be repeatedly called until a 1 is returned). 

 while (!tscVKBAttributes(vkbX,1,500,100,1)); 

  // Create 5 buttons to be displayed and used on the LCD 

 btnCreateText(userX,1,40,10,230,80,1,1,&fi10x12,"ENTER A\nROUTE NUMBER"); 

   btnCreateText(userX,2,40,150,230,80,1,1,&fi10x12,"ENTER THE \n NEW BRIDGE"); 

 btnAttributes(userX,1,0,0,0,1); 

 btnAttributes(userX,2,0,0,0,1); 

   btnMsgBox(0,0,320,240,NULL,"",1,0); // will display a border 

   while (!btnDisplayLevel(userX,1)); // Will display all buttons of Level 1 

  // btnDisplayLevel(userX,1); 

   fVal = 0; 

 //lVal = 0; 

 iVal = 0; 

 sprintf(sVal,""); 

 sprintf(pVal,""); 
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   final = 1; 

   while (final) 

  { 

costate 

   { 

  // Wait for a button to be pressed 

   waitfor ( ( btn = btnGet(userX) ) >= 0 ); 

         //btn = btnGet(userX); 

   switch (btn) 

   { 

        case 1: 

 // Display the Virtual keyboard for use with ints 

 waitfor ( tscVKBGetInt(vkbX,&iVal,-32000,32000,6,&fi14x16,&fi10x12, 

     "ENTER ROUTE") ); 

  printf ( "Route Number = %d\n",iVal ); 

               final =0; 

               break; 

         /* 

            case 2: 

             waitfor ( tscVKBGetInt(vkbX,&iVal,-32000,32000,6,&fi14x16,&fi10x12, "ENTER ROUTE") ); 

               printf("yes"); 

               break; 

               */ 

         } 

    } 

   } 

   fptr = relate(iVal); 

   xmem2root(&length,fptr,sizeof(long)); 
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   //if(length>512)  // Preventive measure to conrol buffer overflow 

  // length=512; 

   xmem2root(buffer,fptr+4,(int)length); 

/* To check the contents of Buffer 

   for(x=0;x<length;x++) 

   { 

   printf("%c",buffer[(int)x]); 

   } 

*/ 

   counter =0; 

//   printf("the length = %d", length); 

   for(x=0;x<length; x++) 

   { 

    if(buffer[x] == 'B') 

       counter++; 

   } 

   printf("\nnum of bridges = %d", counter); 

   start = extract(-1); 

   for(x=0;x<length; x++) 

   { 

    if(buffer[x] == 'X') 

       endLoc = x; 

   } 

   last = extract(endLoc); 

   alen = 0; 

   tmp =12; 

 //  printf(" actual length = %d", alen); 

 ///  for(x =0; x< alen; x++) 
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 //   printf("%d", fin[x]); 

   //printf("\nlast mile post starts at = %d", endLoc); 

   //printf("buffer [endLoc+1] =%d ", buffer[endLoc+1]-'0'); 

/* 

   printf("\nbridge lat deg = %d\n", start.lat_degrees); 

   printf("bridge lat min = %f\n", start.lat_minutes); 

   printf("bridge lon deg = %d\n", start.lon_degrees); 

   printf("bridge lon min = %f\n", start.lon_minutes); 

   */ 

   //printf("Wait for a button to be pressed"); 

   currLoc.lat_degrees = 0; 

   currLoc.lat_minutes = 0.0; 

  // cbr.lat_degrees = 0; 

  // cbr.lat_minutes = 0.0; 

  //mov = 1; 

  offPass = 0; 

  raiseFlag = 0; 

  ignore = 0; 

 while(loop) 

 { 

    currLoc = getposition(); 

 

      //offse = 12; 

    costate 

    { 

       keyProcess(); 

       waitfor(DelayMs(10)); 

    } 
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    costate 

    { 

       //printf("Stage 2 begins"); 

       keypadDef(); 

       keyflag = 0; 

       done = FALSE; 

       while(!done) 

       { 

        waitfor(wKey = keyGet()); 

            kprin(currLoc); 

           done = TRUE; 

       } 

    } 

    costate 

    { 

       if(digIn(12) == 1) 

     { 

            offse = 12; 

            //currLoc1 = getposition(); 

             for(i = 0; i < counter; i++) 

         { 

                  if(offse == offPass) 

                  { 

                   offse = offse + 13; 

                     i = i + 1; 

                  } 

                  currBrg = extract(offse); 

              /*  printf("\n"); 
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                  kprin(currLoc); 

                  printf("\n"); 

                  kprin(currBrg); 

               */ 

              //    printf("offPass = %d", offPass); 

            distance  = gps_ground_distance(&currLoc, &currBrg); 

          //  printf("distance = %f\n", distance); 

            if(distance < 0.4)// original value 0.4 

            { 

                  //   printf("\nloc  = %d", offse); 

                     offPass = offse; 

                     cbr.lat_degrees = currBrg.lat_degrees; 

                     cbr.lat_minutes = currBrg.lat_minutes; 

         cbr.lon_degrees = currBrg.lon_degrees; 

         cbr.lon_minutes = currBrg.lon_minutes; 

                     lowerbox(); 

               break; 

            } 

                  offse = offse + 13; 

             } 

               ignore = 0; 

          } 

         if(digIn(13) == 0) 

         { 

          offse = 12; 

           // while(offse < endLoc) 

           //currLoc1 = getposition(); 

           // { 
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             for(i=0; i< counter; i++) 

             { 

                  distance1 = 0.0; 

                cbr = extract(offPass); 

                  //distance1  = gps_ground_distance(&currLoc, &currBrg); 

                  distance1 =   gps_ground_distance(&cbr, &currLoc); 

              //    printf("\nd = %f ",distance1); 

                printf("\n"); 

                  kprin(currLoc); 

             //   printf("\n--->"); 

               //   kprin(cbr); 

                  if(distance1 < 0.1 ) // original value 0.1 

            { 

             raiseFlag = 1; 

            } 

                  printf("\nraiseflag = %d", raiseFlag); 

            if(distance1 > 0.1 && raiseFlag == 1) 

            { 

                    x = 12; 

                        y = 100.00; 

                        for(i =0; i< counter; i++) 

                        { 

                         if( x != offPass) 

                           { 

                             rc1 = extract(x); 

                              nd =  gps_ground_distance(&rc1, &currLoc); 

                              if(nd< y) 

                              { 
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                               y = nd; 

                                 ofx = x; 

                              } 

                           } 

                           x = x+13; 

                        } 

                        if(y < 0.3) 

                        { 

                          offPass = ofx; 

                          printf("new bridge in Sight"); 

                        } 

                        if( y > 0.3) 

                        { 

                           printf("Should raise now"); 

                           printf("Ignore = %d", ignore); 

                           if(ignore != 1) 

                           { 

                            raisebox(); 

                              ignore = 1; 

                              raiseFlag = 0; 

                            break; 

                           } 

                        } 

            } 

                  offse = offse + 13; 

         } 

           // } 

     } 
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     } 

 } 

} 


